
Using Cray® Performance Analysis
Tools
S–2376–41

© 2006, 2007 Cray Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted
Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14
or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the
U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, UNICOS and UNICOS/mk are federally registered trademarks and Active Manager, Cray Apprentice2,
Cray C++ Compiling System, Cray Fortran Compiler, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+, Cray SHMEM,
Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, CrayDoc, CRInform, Libsci, RapidArray, UNICOS/lc, and UNICOS/mp are trademarks of Cray Inc.

AMD, AMD Opteron, and Opteron are trademarks of Advanced Micro Devices, Inc. GNU is a trademark of The Free Software
Foundation. Linux is a trademark of Linus Torvalds. Lustre is a trademark of Cluster File Systems, Inc. PBS Pro is a trademark of
Altair Grid Technologies. PGI is a trademark of The Portland Group Compiler Technology. SUSE is a trademark of SUSE LINUX
Products GmbH, a Novell business. TotalView is a trademark of Etnus, LLC. STMicroelectronics, Inc. Windows is a trademark of
Microsoft Corporation. X Window System is a trademark of The Open Group. All other trademarks are the property of their
respective owners.

New Features

Using Cray® Performance Analysis Tools S–2376–41

This manual was revised to include the following changes for the CrayPat 4.1 and Cray Apprentice2 4.1
(collectively referred to as the "Cray performance analysis tools") releases:

• The Cray performance analysis tools now run on Cray XT3, Cray XT4, and Cray XT5 systems, including
Cray XT5h systems with Cray X2 compute blades. For more information, see Section 1.1.2, page 3.

• Asynchronous (sampling-based) experiments are now available on all supported platforms. For more
information, see Section 2.2.1, page 23.

• The PAPI (Performance API) module names have been changed. For more information, see Section 1.1.3,
page 3.

Record of Revision

Version Description

3.1 October 2006
First release. Supports CrayPat 3.1 and Cray Apprentice2 3.1 running on Cray XT
series systems.

4.1 December 2007
Supports CrayPat 4.1 and Cray Apprentice2 4.1 running on Cray XT3, Cray XT4, and
Cray XT5 systems, including Cray XT5h systems with Cray X2 compute blades.

S–2376–41 i

Contents

Page

Preface ix

Accessing Product Documentation ix

Conventions . x

Reader Comments . xi

Cray User Group . xi

Introduction [1] 1

Getting Started on the Cray XT Series System 1

Using Modules . 1

Special Considerations for Cray XT5h Users 3

Special Considerations for PAPI Users 3

Using File Systems . 4

Using Compilers . 5

Running Programs . 6

Catamount and yod . 7

CNL and aprun . 7

Cray XT5h Systems with Cray X2 Compute Nodes 8

Batch Considerations . 8

Enabling X Window System Forwarding 9

Getting Started with CrayPat [2] 11

Basic Usage . 12

Procedure 1: Basic CrayPat Usage 12

In More Depth: pat_build . 22

Asynchronous (Sampling) Experiments 23

Trace Groups: -g options . 25

Trace Libraries: -t option . 26

S–2376–41 iii

Using Cray® Performance Analysis Tools

Page

Trace Functions: -T options . 27

User-defined Functions: -u option 27

Using Compiler Options: -w option 28

Build Directives: -d, -D, and -z options 29

pat_build Environment Variables 31

File Handling: -o, -f, and -A options 32

In More Depth: program execution 33

Batch Environments . 33

Runtime Environment Variables 33

Redirecting CrayPat Output Files 34

Capturing Hardware Counter Data 34

Controlling Data File Size and Content 35

In More Depth: pat_report . 35

Standard Reports: -O options . 37

Creating Customized Reports . 43

Selecting Data: -d and -P options 44

Data Aggregation: -b options 48

Report Appearance: -s options 50

Working with Multiple Data Sets 53

pat_report Environment Variables: -z options 54

File Handling: -i and -o options 55

Exporting Data: -f options . 56

Simplified Interfaces . 56

Execution and Reporting: pat_run 57

Options . 57

Examples . 58

Output . 59

Hardware Counters: pat_hwpc 59

Procedure 2: Using pat_hwpc 60

Options . 61

iv S–2376–41

Contents

Page

Examples . 62

Output . 63

Using the CrayPat API [3] 69

Procedure 3: Using CrayPat API Calls 69

Header Files . 70

API Calls . 70

Fortran Functions . 70

C Functions . 73

Examples . 75

Fortran . 75

Example 1: API calls in a Fortran program 76

C . 80

Example 2: API calls in a C program 80

Using the CrayPat hwpc Library [4] 85

Procedure 4: Using CrayPat hwpc Calls 85

Header Files . 86

hwpc Calls . 86

Examples . 87

Fortran . 88

Example 3: hwpc Calls in a Fortran program 88

C or C++ . 89

Example 4: hwpc calls in a C program 89

Selecting Hardware Counters to Record 90

Recommended Experiments [5] 91

Hardware Counters . 91

Time, FLOPS, and MIPS . 91

For More Information . 94

Cache Usage . 94

Floating Point Operations and Stalls 98

S–2376–41 v

Using Cray® Performance Analysis Tools

Page

Compiler Vectorization . 101

Program Profiles . 102

Basic Profile . 103

Callers Profile . 105

Call Tree Profile . 107

Load Balancing Profile . 109

MPI Profile . 115

Using Cray Apprentice2 [6] 117

Launching the Program . 117

Opening Data Files . 118

Basic Navigation . 120

Viewing Reports . 122

Overview Report . 122

Environment Reports . 127

Traffic Report . 132

Text Report . 134

Mosaic Report . 135

Activity Report . 137

Delta View . 138

Function Report . 139

Call Graph . 140

I/O Reports . 142

I/O Overview Report . 142

I/O Traffic Report . 143

I/O Rates . 144

Hardware Reports . 145

Hardware Counters Overview Report 145

Hardware Counters Plot . 146

vi S–2376–41

Contents

Page

Appendix A Cray XT Series Hardware Counters 149

Appendix B Build Directives 153

Glossary 155

Index 157

Tables
Table 1. CrayPat Components . 11

Table 2. pat_build -g tracegroups 25

Table 3. pat_build -T Arguments 27

Table 4. Build Directives . 30

Table 5. pat_build Environment Variables 31

Table 6. Standard Reports . 37

Table 7. -d Option Keywords . 44

Table 8. -d Option Values . 46

Table 9. -d Option Thresholds . 47

Table 10. -b Option Keywords . 48

Table 11. -s Option Keywords . 50

Table 12. pat_report Environment Variables 54

Table 13. pat_run Options . 58

Table 14. pat_hwpc Options . 61

Table 15. Cray Apprentice2 Navigation Functions 121

Table 16. Common Panel Actions 122

Table 17. Hardware Counter Groups 149

Table 18. Common Hardware Counters 151

Figures
Figure 1. File Selection . 119

Figure 2. Screen Navigation . 120

Figure 3. Overview: Pie Chart . 123

S–2376–41 vii

Using Cray® Performance Analysis Tools

Page

Figure 4. Overview: Bar Graph . 125

Figure 5. Load Balance Report . 126

Figure 6. Environment: Environment Variables 128

Figure 7. Environment: System Information 129

Figure 8. Environment: Resource Limits 130

Figure 9. Environment: Heap Information 131

Figure 10. Traffic Report . 132

Figure 11. Traffic Report (Detail) 134

Figure 12. Text Report . 135

Figure 13. Mosaic Report . 136

Figure 14. Activity Report . 137

Figure 15. Delta View . 138

Figure 16. Function Report . 139

Figure 17. Call Graph . 140

Figure 18. I/O Overview . 142

Figure 19. I/O Traffic . 143

Figure 20. I/O Rates . 144

Figure 21. Hardware Counters Overview 145

Figure 22. Hardware Counters Plot 146

viii S–2376–41

Preface

The information in this preface is common to Cray documentation provided with
this software release.

Accessing Product Documentation

With each software release, Cray provides books and man pages, and in
some cases, third-party documentation. These documents are provided in the
following ways:

CrayDoc The Cray documentation delivery system that allows you to
quickly access and search Cray books, man pages, and in some
cases, third-party documentation. Access this HTML and PDF
documentation via CrayDoc at the following locations:

• The local network location defined by your system
administrator

• The CrayDoc public website: docs.cray.com

Man pages Access man pages by entering the man command followed by the
name of the man page. For more information about man pages,
see the man(1) man page by entering:

% man man

Third-party documentation

Access third-party documentation not provided through
CrayDoc according to the information provided with the
product.

S–2376–41 ix

http://docs.cray.com/

Using Cray® Performance Analysis Tools

Conventions

These conventions are used throughout Cray documentation:

Convention Meaning

command This fixed-space font denotes literal items, such as file
names, pathnames, man page names, command names, and
programming language elements.

variable Italic typeface indicates an element that you will replace with a
specific value. For instance, you may replace filename with the
name datafile in your program. It also denotes a word or
concept being defined.

user input This bold, fixed-space font denotes literal items that the user
enters in interactive sessions. Output is shown in nonbold,
fixed-space font.

[] Brackets enclose optional portions of a syntax representation for
a command, library routine, system call, and so on.

... Ellipses indicate that a preceding element can be repeated.

name(N) Denotes man pages that provide system and programming
reference information. Each man page is referred to by its name
followed by a section number in parentheses.

Enter:

% man man

to see the meaning of each section number for your particular
system.

x S–2376–41

Preface

Reader Comments

Contact us with any comments that will help us to improve the accuracy and
usability of this document. Be sure to include the title and number of the
document with your comments. We value your comments and will respond to
them promptly. Contact us in any of the following ways:

E-mail:
docs@cray.com

Telephone (inside U.S., Canada):
1–800–950–2729 (Cray Customer Support Center)

Telephone (outside U.S., Canada):
+1–715–726–4993 (Cray Customer Support Center)

Mail:
Customer Documentation
Cray Inc.
1340 Mendota Heights Road
Mendota Heights, MN 55120–1128
USA

Cray User Group

The Cray User Group (CUG) is an independent, volunteer-organized
international corporation of member organizations that own or use Cray Inc.
computer systems. CUG facilitates information exchange among users of Cray
systems through technical papers, platform-specific e-mail lists, workshops, and
conferences. CUG memberships are by site and include a significant percentage
of Cray computer installations worldwide. For more information, contact your
Cray site analyst or visit the CUG website at www.cug.org.

S–2376–41 xi

file:///tmp/mytmp.4724/mailto:docs%40cray.com
http://www.cug.org

Introduction [1]

This guide is for users who develop, port, or optimize software applications for
use on the Cray XT series of supercomputer systems: specifically Cray XT3,
Cray XT4, and Cray XT5 systems, including Cray XT5h systems with Cray X2
compute blades. The information in this guide enables you to sample, trace,
measure, and evaluate your program's behavior during execution, and may help
you find opportunities to significantly improve program performance.

Prerequisites for using this guide are familiarity with your Cray system's
programming environment and already having your program in the state of
being debugged and able to compile and run successfully.

Cray XT series systems differ from other Cray systems in that Cray XT series
systems support a variety of compilers, debuggers, batch queuing systems, and
file systems, depending on site preferences and the software options chosen.
Therefore, this guide concentrates on the use of the Cray performance analysis
tools. Compiler-specific optimization techniques and compile-time arguments
and options are discussed in the respective compiler user's guides.

The examples presented in this guide were developed using PGI compilers and
the PBS Pro batch queuing system on a Cray XT3 system and may differ in some
particulars from the behavior of the programming environment on your system.
The appearance and content of reports may also be expected to differ from the
results on your system.

1.1 Getting Started on the Cray XT Series System

This section summarizes the aspects of the Cray XT series Programming
Environment that you should keep in mind when using the performance
analysis tools. For more detailed information, refer to the "Getting Started" or
programming environment user's guide for your system.

1.1.1 Using Modules

The Modules application (not to be mistaken for Fortran modules) enables you to
modify your user environment dynamically by using modulefiles. Each module
file contains all the information needed to configure the shell for an application.
While it is possible to use Cray systems without using the Modules application,
doing so introduces unnecessary complexity and increases the opportunity for
user error.

S–2376–41 1

Using Cray® Performance Analysis Tools

The Modules application typically is initialized and a default set of module files
is loaded whenever you log on to the system. To discover which modules are
currently loaded, enter this command:

> module list

The system displays the modules currently loaded.

Currently Loaded Modulefiles:

1) modules/3.1.6 7) xt-mpt/2.0.35 13) xt-catamount/2.0.35

2) MySQL/4.0.27 8) xt-pe/2.0.35 14) xt-boot/2.0.35

3) pgi/7.1.2 9) PrgEnv-pgi/2.0.35 15) xt-lustre-ss/2.0.35

4) totalview-support/1.0.2 10) xt-service/2.0.35 16) xtpe-target-cnl

5) xt-totalview/8.3 11) xt-libc/2.0.35 17) Base-opts/2.0.35

6) xt-libsci/10.2.0 12) xt-os/2.0.35

Note: Cray man pages are packaged in the modules with the software they
document. The man pages do not become available until after you have loaded
the appropriate module.

To discover which module files are available for use on your system, enter this
command:

> module avail

To load a module file, enter this command:

> module load modulefile

To use the Cray performance analysis tools, you must load the CrayPat module
before compiling or linking your program. If the CrayPat module is not part of
your default module set, enter this command to load it:

> module load craypat

If you use the optional Cray Apprentice2 graphical reporting tool, enter this
command:

> module load apprentice2

Note: Cray Apprentice2 is a post-processing data visualization tool with which
you can view and explore the data files produced by CrayPat during program
execution, after program execution is complete. You do not need to load the
Cray Apprentice2 module in order to use CrayPat or before compiling, linking,
or running your programs.

For more information regarding the Modules application, see the module(1)
man page.

2 S–2376–41

Introduction [1]

1.1.2 Special Considerations for Cray XT5h Users

Cray XT5h systems with Cray X2 compute nodes are hybrid systems that use
Cray XT4 or Cray XT5 systems as front-ends. To compile and run code and
perform performance analysis experiments on the Cray X2 compute nodes, it
typically is necessary to login to the front-end system, and then change Modules
versions and unload the default module set before loading the Cray X2 modules.
For example, it may be necessary to perform a series of operations similar to
the following steps.

1. Login to the Cray XT5h system.

% ssh -X Cray_X2_name

2. Switch Modules versions.

> module use /opt/ctl/modulefiles

3. Unload the default compiler and base options modules.

> module unload PrgEnv-pgi

> module unload Base-opts

4. Load the Cray X2 programming environment.

> module load PrgEnv-x2

5. Load the Cray X2 version of the performance analysis tools.

> module load x2-craypat

6. Set the PAT_BUILD_CC environment variable to point to the correct version
of the compiler.

> setenv PAT_BUILD_CC /opt/ctl/x1x2-pe/default/bin/cc

Note: These steps are provided as an example only. The actual steps required
may vary depending on your site's choice of operating system, programming
environment, and default configuration.

1.1.3 Special Considerations for PAPI Users

The Cray performance analysis tools are built on PAPI (Performance API) release
3.5.99a. While it is not necessary to load the PAPI module in order to use the Cray
performance analysis tools, advanced users may wish to do so in order to use
low-level PAPI functionality.

S–2376–41 3

Using Cray® Performance Analysis Tools

Prior to this release, Cray supplied the PAPI module in different versions to
support the different compute node operating systems used on Cray XT series
systems. With this release, PAPI is consolidated into two modules.

• xt-papi — used on all Cray XT series systems except Cray XT5h systems
with Cray X2 compute nodes, regardless of your site's choice of compute node
operating system

• x2-papi — used exclusively on Cray XT5h systems with Cray X2 compute
nodes

For more information about PAPI, see the intro_papi(3) man page.

1.1.4 Using File Systems

Cray XT series systems can support a variety of file systems. The Cray
performance analysis tools, on the other hand, behave differently depending
on the file system currently in use. For example, single-processor programs
can be executed and analyzed while mounted on the ufs file system, but
multiple-processor programs such as MPI or SHMEM programs require a
high-performance file system that supports record-locking, such as the Lustre file
system. Furthermore, when working with large processor-count programs, it is
possible to exceed the number of open files permitted under ufs.

For these reasons, always be mindful of your file system mount points. To
determine which file system you are currently using, execute the pwd command.
This returns the full directory path.

> pwd

/ufs/home/

>

If you are currently mounted on a ufs file system and need to use the Lustre file
system instead, enter this command to identify the Lustre mount points.

> df -t lustre

This returns information similar to the following example. In this example, the
Lustre mount points are /lus/nid00007 and /lus/nid00135.

Filesystem 1K-blocks Used Available Use% Mounted on

7@ptl:/nid00007_mds/client

822335392 344863556 435698216 45% /lus/nid00007

135@ptl:/nid00135_mds/client

13521237340 4811467048 8570185860 36% /lus/nid00135

4 S–2376–41

Introduction [1]

Next, use the cd command to change to a Lustre mount point, and then create a
working directory on the mount point.

> cd /lus/nid00007

/lus/nid00008> mkdir smith

Finally, use the cd command to change to the working directory you have
created, and compile your program and conduct your performance analysis
experiments in the working directory.

1.1.5 Using Compilers

The compilers that are available for use on your Cray system may vary
depending on your site preferences and software options. However, the
following points deserve special attention:

• The Programming Environment modules (PrgEnv-vendor/version) contain
your compilers, libraries, and various other components. While you can use
the module command to load and unload individual components, in general,
the easiest way to avoid many common problems is to start by loading a
complete PrgEnv module.

S–2376–41 5

Using Cray® Performance Analysis Tools

• If you intend to use the optional CrayPat performance analysis tool set, you
must load the CrayPat module before compiling or linking your program. If
the module is not loaded, you will at best be unable to capture data during
program execution. At worst, if you have incorporated CrayPat commands
into your make file or CrayPat API instructions into your source code, you
may be unable to compile your program.

If you find yourself unable to compile code because of the presence of CrayPat
commands or API calls, load the CrayPat module.

• The compiler commands are properly termed compiler drivers. For example,
the ftn command can be used to compile, load, and link program units in
one step. If used in this manner, and depending on your choice of compiler
and the compiler's default behavior, the compiler driver may automatically
delete all intermediary files created while going from source to executable.

The Cray performance analysis tools, on the other hand, require that the
.o used to create an executable be present (and optionally, the .a files, if
created), and in some cases require that the original source files be available
as well. Therefore, when compiling with the intention of conducting
performance analysis experiments, be mindful of your working directories
and use the compiler options to preserve the relocatable object files. For
example, if using the PGI Fortran compiler, type this command to compile the
program and pause before linking, thus preserving the .o and (if created)
.a file(s):

> ftn -c sourcefile.f

Then link the object files to create the executable program:

> ftn -o executable sourcefile.o

For more information about compiling and linking, refer to the programming
environment documentation for your system and your compiler user's guides.

1.1.6 Running Programs

The method used to run your program varies depending on your site's choice of
compute node operating system and use of batch policies.

6 S–2376–41

Introduction [1]

1.1.6.1 Catamount and yod

On Cray systems that use the Catamount compute node operating system,
program execution is controlled by the yod(1) application launcher. The yod
utility supports a variety of options to set parameters such as the chargeable
account, heap size, stack size, and so on at run time, but one of the most
commonly used arguments is -size, which is used to specify the number of
processors to be allocated to the job. For example, to run the program a.out on
16 processors in interactive mode, you might enter this command:

> yod -size 16 a.out

However, most sites rarely run in interactive mode, and file system
considerations generally prevent running a program while mounted on the ufs
file system. Instead, it is necessary to use the df -t lustre command to locate
a Lustre mount point, use the cd command to change to a directory on the Lustre
file system, and then either create a batch script to run your program or request
an interactive session within the context of the batch system.

When you do so, remember that yod itself can be used as an argument with
some performance analysis utilities. For example, to request an interactive batch
session in PBS Prog, use pat_hwpc(1) to instrument program a.out, execute the
instrumented program on 16 processors, generate a basic hardware performance
report, and save the report output in data files, you could enter these commands:

> qsub -I -V -l size=16

nid00004 > pat_hwpc -f yod -size 16 a.out

In this example the -f option instructs pat_hwpc to save the report data in files
(one data file per processor), while the yod -size 16 option tells pat_hwpc
how to run the program and how many processors to use.

When yod is used as an argument to another command, all other
command-related options must precede yod, and yod and its options must
always be the last arguments given on the command line.

1.1.6.2 CNL and aprun

On Cray systems that use the CNL compute node operating system, program
execution is controlled by the aprun(1) application launcher. The aprun utility
is similar to yod, but supports different options. For more information about
launching programs on CNL systems, see the aprun(1) man page or your site's
"Getting Started" or programming environment user's manual.

S–2376–41 7

Using Cray® Performance Analysis Tools

As with yod, remember that aprun can be used as an argument with some
performance analysis utilities. For example, to use pat_hwpc(1) to instrument
program a.out, execute the instrumented program on 16 processors, generate
a basic hardware performance report, and save the report output in data files,
you could enter this command:

nid00004 > pat_hwpc -f aprun -n 16 ./a.out

When aprun is used as an argument to another command, all other
command-related options must precede aprun, and aprun and its options must
always be the last arguments given on the command line.

1.1.6.3 Cray XT5h Systems with Cray X2 Compute Nodes

Cray XT5h systems with Cray X2 compute nodes use a variant of the CNL
compute node operating system, and thus use the aprun command to execute
programs. However, it is important to keep track of where you are in the system
and which modules you have loaded. Executables created while Cray XT series
programming environments such as PrgEnv-pgi are loaded cannot be executed
while the Cray X2 programming environment is loaded. Likewise, executables
created while a Cray X2 programming environment such as PrgEnv-x2 is
loaded cannot be executed while a Cray XT series programming environment is
loaded.

1.1.6.4 Batch Considerations

Most Cray XT series system sites operate under the control of a batch queuing
system and do not readily permit simple interactive sessions. On these sites, it
is necessary to write a script to control your job. For more information, see your
batch queuing system documentation.

On systems that use the PBS Pro batch queuing system, a form of interactive
usage is permitted within the context of the batch system. For example, to
request an interactive session using 16 processors, you can enter a command
like this example.

> qsub -I -V -l size=16

If you use qsub -I to open an interactive session in PBS Pro, the session opens
in your home directory on the ufs file system and with your default modules
loaded. If you are working on a Lustre mount point when you issue the qsub
command, you must change back to the Lustre mount point before continuing.
Likewise, if you loaded any modules or set any environment variables before
starting the batch session, these are not loaded or set inside the batch session.

8 S–2376–41

Introduction [1]

To minimize confusion when switching back and forth between shell and
interactive batch sessions, use the qsub -V option to export your current module
settings and environment variables to the batch session.

Note: If you are using a multiple-core system, remember that the PBS Pro size
parameter and the yod size or aprun -n parameters are not identical. The PBS
Pro size parameter defines the number of compute nodes to be reserved for
the session, while the yod size or aprun -n parameters define the number of
processors (cores) to be used.

Most of the examples in this manual were developed using interactive sessions
under PBS Pro on systems using the Catamount compute node operating system.
These examples will be updated in future editions of this manual.

1.1.7 Enabling X Window System Forwarding

The Cray Apprentice2 graphic report visualization tool requires that your local
workstation be configured to accept the X Window System display information
forwarded by the Cray XT series system. Cray XT series systems are normally
configured to perform X Window System forwarding through ssh by default.
However, if you are having problems launching the Cray Apprentice2 graphic
report visualization tool, it may be necessary to configure X Window System
forwarding manually.

The easiest way to do so is by using the -X option when logging into the Cray XT
series system, as shown in the following example.

@workstation % ssh -X Cray_XT_name

For this method to work, the DISPLAY environment variable must not be set in
your .cshrc file on the Cray XT series system.

If you continue to have problems with X Window System forwarding, contact
your system administrators or IT support staff. For example, many non-Unix
workstations require the installation of additional utilities in order to support X
Window System forwarding.

S–2376–41 9

Using Cray® Performance Analysis Tools

10 S–2376–41

Getting Started with CrayPat [2]

The CrayPat performance analysis tool is the primary high-level means of
collecting program performance data on Cray XT series systems. CrayPat
provides access to a variety of experiments and reports that can indicate how
your program is behaving during execution and where possible performance
bottlenecks may lie.

CrayPat is best thought of as a suite of utilities. The individual components
of CrayPat, as described in Table 1, can be run from the command line or
incorporated into scripts.

Table 1. CrayPat Components

Program Description

pat_build(1) pat_build is the core of CrayPat. It is used
to prepare programs for performance analysis
experiments by "instrumenting" the executable
code, by means of inserting user-specified entry
points and intercept routines for data capture.
The process of instrumenting code is discussed
in more detail in Section 2.2, page 22.

pat_report(1) After a program has been instrumented with
pat_build, executing the instrumented
program produces one or more binary data files
containing the information captured during
program execution. Use pat_report to
generate human-readable reports and statistics
from this data or to export the data for use by
other applications. The process of generating
reports and exporting data is discussed in more
detail in Section 2.4, page 35.

pat_run(1) pat_run is a simplified wrapper script that
enables you to use one command line to both
execute an instrumented program and generate
a report. The use of pat_run is discussed in
more detail in Section 2.5.1, page 57.

Note: The pat_run command is deprecated
and will be removed in a future release.

S–2376–41 11

Using Cray® Performance Analysis Tools

Program Description

pat_hwpc(1) As with pat_run, pat_hwpc is a simplified
wrapper script that enables you to use one
command line to instrument a program (for
a limited range of experiments), execute the
program, and generate a report. The use of
pat_hwpc is discussed in more detail in Section
2.5.2, page 59.

CrayPat API If you need a closer focus than pat_build
permits, use the CrayPat API (application
programming interface) to insert CrayPat calls
into your source code and collect data at the
precise points of interest. The CrayPat API is
discussed with examples in Chapter 3, page 69.

pat_help(1) pat_help is the online documentation system
that is embedded within CrayPat. Whenever
the CrayPat module is loaded, you can access
the help system by entering pat_help at the
command line. For more information, see the
pat_help(1) man page.

2.1 Basic Usage

The basic process of using CrayPat is the same in every case and follows the steps
laid out in Procedure 1.

Procedure 1: Basic CrayPat Usage

1. Before you can use any CrayPat component, you must load the CrayPat
module. If this module is not part of your default Programming
Environment, type this command to load it.

> module load craypat

2. If you loaded the CrayPat module in step 1, you must recompile or at least
re-link your code in order to ensure that the CrayPat libraries are linked in
and the environment variables are set correctly for CrayPat operation.

12 S–2376–41

Getting Started with CrayPat [2]

Remember, CrayPat always requires access to the .o (object) and .a (archive)
files created during compilation, and in some cases to the original source
files as well. With most compilers this means you must pause between
compilation and linking in order to preserve the intermediary files. For
example, if you are using the PGI Fortran compiler, you might type the
following commands in order to pause during compilation and preserve
the .o file.

> ftn -c myprogram.f

> ftn -o myprogram myprogram.o

Note: If you incorporate CrayPat API calls into your source code, you
must have the CrayPat module loaded in order to compile your code
successfully. Likewise, if you use make to compile your program and
include CrayPat instructions in your makefile, you must have the
CrayPat module loaded beforehand in order to use the make command
successfully.

3. Use pat_build(1) to instrument the compiled executable for one or more
experiments. For example, to trace all MPI (message passing interface) calls
in your program, type the following command.

> pat_build -g mpi myprogram

This results in the creation of a copy of the executable named
myprogram+pat, which contains the entry points and intercept routines
needed to collect the desired information. Your original executable remains
unchanged.

The pat_build options are described in more detail in Section 2.2, page 22
and in the pat_build(1) man page.

4. Execute the instrumented version of your program. For example, to run the
program interactively on 16 processors on a Catamount, type this command.

> yod -size 16 ./myprogram+pat

S–2376–41 13

Using Cray® Performance Analysis Tools

If you are working in a batch environment and intend to use pat_run, to
convert an .xf file to an .ap2 file, or to generate reports as part of a batch
job, remember to verify that the CrayPat module is loaded in the batch
environment before beginning execution. For example, if you are using the
PBS Pro batch control system on a Catamount system, you might issue the
following commands to open a batch session and then execute the program.
In this case, the -V option forces the batch session to inherit the module
and environment variable settings from the shell used to issue the qsub
command.

> qsub -I -V -l size=16

nid0004 > yod -size 16 ./myprogram.pat

The system executes your program and at the end of a successful run creates
one or more binary files, which contain the data captured during program
execution.

Experiment data file(s) written:

/lus/nid00008/temp/myprogram+pat+29td.xf

Each data file name contains a process ID number, which changes each time
the instrumented program is executed, and a type code, which indicates
the type of CrayPat experiment that was performed. In this example, the
PID number is 29 and the type code is td, which indicates that the data
was generated by a tracing experiment operating on a distributed memory
process.

For more information about running instrumented programs, see Section
2.3, page 33.

5. Use pat_report(1) to view and process the data that was captured while
the program was running. For example, to generate the default report using
the data captured in the previous step, type this command.

> pat_report /lus/nid00008/temp/myprogram+pat+29td.xf

14 S–2376–41

Getting Started with CrayPat [2]

After you do so, pat_report reads in the specified data file and generates
a report to stdout. The default report begins by identifying the program
in question, the type of experiment that was performed, and the system on
which the program was executed.

CrayPat/X: Version 3.1 Revision 363 (xf 305) 08/28/06 16:25:58

Experiment: trace

Experiment data file:

/lus/nid00008/temp/myprogram+pat+29td.xf (RTS)

Original program: /ufs/home/smith/myprogram

Instrumented program: /ufs/home/smith/./myprogram+pat

Program invocation: ./myprogram+pat

Number of PEs: 16

Exit Status: 0 PEs: 0-15

Runtime environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1/cpatx

PAT_RT_EXPFILE_DIR=/lus/nid00008/temp

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1/cpatx

Report command line options: <none>

Host name and type: perch x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Next, the default report lists the functions that were sampled or traced and
the related source files, if available. In this example we traced MPI library
calls, so the source file locations are not available.

Traced functions:

MPI_Abort ==NA==

MPI_Allgather ==NA==

MPI_Allreduce ==NA==

MPI_Attr_put ==NA==

S–2376–41 15

Using Cray® Performance Analysis Tools

MPI_Barrier ==NA==

MPI_Bcast ==NA==

MPI_Comm_call_errhandler ==NA==

MPI_Comm_create_keyval ==NA==

MPI_Comm_dup ==NA==

MPI_Comm_free ==NA==

MPI_Comm_get_name ==NA==

MPI_Comm_get_parent ==NA==

MPI_Comm_group ==NA==

MPI_Comm_rank ==NA==

MPI_Comm_set_attr ==NA==

MPI_Comm_size ==NA==

MPI_Comm_split ==NA==

MPI_File_set_errhandler ==NA==

MPI_Finalize ==NA==

MPI_Gather ==NA==

MPI_Get_count ==NA==

MPI_Group_free ==NA==

MPI_Group_translate_ranks ==NA==

MPI_Init ==NA==

MPI_Init_thread ==NA==

MPI_Initialized ==NA==

MPI_Irecv ==NA==

MPI_Isend ==NA==

MPI_Keyval_create ==NA==

MPI_Op_create ==NA==

MPI_Pack ==NA==

MPI_Pack_size ==NA==

MPI_Reduce ==NA==

MPI_Register_datarep ==NA==

MPI_Type_get_extent ==NA==

MPI_Type_get_true_extent ==NA==

MPI_Type_size ==NA==

MPI_Unpack ==NA==

MPI_Waitall ==NA==

__cray_hwpc_begin ==NA==

__cray_hwpc_end ==NA==

__cray_hwpc_init ==NA==

exit .../computelibs/glibc/stdlib/exit.c

f_cray_hwpc_begin_ ==NA==

f_cray_hwpc_end_ ==NA==

longjmp .../../sysdeps/generic/longjmp.c

main ==NA==

16 S–2376–41

Getting Started with CrayPat [2]

mpi_comm_rank_ ==NA==

mpi_comm_size_ ==NA==

mpi_finalize_ ==NA==

mpi_init_ ==NA==

mpi_irecv_ ==NA==

mpi_isend_ ==NA==

mpi_reduce_ ==NA==

mpi_register_datarep_ ==NA==

mpi_waitall_ ==NA==

mpi_wtick_ ==NA==

mpi_wtime_ ==NA==

Next, the default report produces a series of tables. The -O, -d, and -b
options listed at the beginning of each table are the actual table definitions,
which determine what data is selected for the table and how it is displayed.
These options are explained in greater detail in Section 2.4, page 35.

Table 1 shows the percentage of time and actual time spent in each
function, along with the actual number of calls to each function and load
imbalance metrics. For example, this program spent 62.7-percent of its
time in mpi_waitall_, which could indicate a significant load-balancing
problem—except that as a whole, the program only spent 6.4-percent of its
total time performing MPI calls.

Notes for table 1:

High level option: -O profile

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr \

-b exp,gr,fu,pe=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE='HIDE'

100.0% | 6.421136 | -- | -- | 271322 |Total

S–2376–41 17

Using Cray® Performance Analysis Tools

|--

| 93.6% | 6.011519 | -- | -- | 57592 |USER

||---

|| 40.3% | 2.421575 | 0.057159 | 2.6% | 9600 |#21.Do 200

|| 30.5% | 1.831329 | 0.028459 | 1.7% | 9584 |#31.Do 300

|| 24.5% | 1.474364 | 0.094180 | 6.9% | 9600 |#11.Do 100

|| 2.6% | 0.159197 | 0.014464 | 9.5% | 9584 |#30.Calc3

|| 1.2% | 0.074095 | 0.007297 | 10.2% | 9600 |#20.Calc2

|| 0.4% | 0.024416 | 0.095965 | 91.1% | 8 |main

|| 0.4% | 0.021373 | 0.001205 | 6.1% | 9600 |#10.Calc1

|| 0.1% | 0.005172 | 0.000084 | 1.8% | 8 |#88.Inital

||===

| 6.4% | 0.409616 | -- | -- | 213730 |MPI

||---

|| 62.7% | 0.256983 | 0.444855 | 72.4% | 33604 |mpi_waitall_

|| 19.9% | 0.081354 | 0.045856 | 41.2% | 89987 |mpi_irecv_

|| 17.3% | 0.070944 | 0.090034 | 63.9% | 89987 |mpi_isend_

|| 0.1% | 0.000326 | 0.000407 | 63.5% | 120 |mpi_reduce_

|==

18 S–2376–41

Getting Started with CrayPat [2]

Table 2 shows the same data, but broken out by processing element and with
an emphasis on the count, total, and size of messages sent. The -d option
pe=[mmm] is used on many reports; it restricts the table to showing only
the PEs having the maximum, median, and minimum values. This table
suggests that the MPI imbalance, if any, may lie in the code that is running on
processing element 7.

Notes for table 2:

High level option: -O load_balance_sm

Low level options: -d ti%@0.05,ti,sc,sm,sz -b exp,gr,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 2: Load Balance with MPI Sent Message Stats

Time % | Time | Sent | Sent Msg |Avg Sent |Experiment=1

| | Msg | Total |Msg Size |Group

| | Count | Bytes | | PE[mmm]

100.0% | 6.421136 | 89987 | 305450008 | 3394.38 |Total

|---

| 93.6% | 6.011519 | -- | -- | -- |USER

||--

|| 12.8% | 6.142500 | -- | -- | -- |pe.6

|| 12.6% | 6.077759 | -- | -- | -- |pe.0

|| 11.5% | 5.527477 | -- | -- | -- |pe.7

||==

| 6.4% | 0.409616 | 89987 | 305450008 | 3394.38 |MPI

||--

|| 27.2% | 0.891726 | 10803 | 29585816 | 2738.67 |pe.7

|| 9.1% | 0.298947 | 8401 | 34477704 | 4104.00 |pe.5

|| 8.4% | 0.276891 | 8401 | 34477704 | 4104.00 |pe.6

|===

Table 3 shows the message counts and sizes for each function, broken out
by calling routine and PE, and excludes any functions with a sent message
count of zero. Again, this table draws attention to PE 7, which appears to be
spending a lot of time sending a few very large messages.

S–2376–41 19

Using Cray® Performance Analysis Tools

Notes for table 3:

High level option: -O mpi

Low level options: -d sc@,mb1..7 -b exp,fu,ca,pe=[mmm]

This table shows only lines with Sent Msg Count > 0.

Table 3: MPI Sent Messages Stats by Bucket

Sent | MsgSz | 256B<= |Experiment=1

Msg | <16B | MsgSz |Function

Count | | <4KB | Caller

| | | PE[mmm]

89987 | 15590 | 74397 |Total

|------------------------------------

| 89987 | 15590 | 74397 |mpi_isend_

||-----------------------------------

|| 40800 | 3600 | 37200 |calc2_

|| | | | MAIN_

||||---------------------------------

|||| 7200 | 2400 | 4800 |pe.0

|||| 4800 | -- | 4800 |pe.2

|||| 4800 | -- | 4800 |pe.5

||||=================================

|| 34800 | 4800 | 30000 |calc1_

|| | | | MAIN_

||||---------------------------------

|||| 7200 | 2400 | 4800 |pe.0

|||| 3600 | -- | 3600 |pe.2

|||| 3600 | -- | 3600 |pe.5

||||=================================

|| 14376 | 7188 | 7188 |calc3_

|| | | | MAIN_

||||---------------------------------

|||| 14376 | 7188 | 7188 |pe.0

|||| 0 | -- | -- |pe.3

|||| 0 | -- | -- |pe.5

||||=================================

|| 11 | 2 | 9 |inital_

|| | | | MAIN_

||||---------------------------------

20 S–2376–41

Getting Started with CrayPat [2]

|||| 3 | 1 | 2 |pe.7

|||| 1 | -- | 1 |pe.2

|||| 1 | -- | 1 |pe.5

|====================================

Table 4 highlights heap usage statistics.

Notes for table 4:

High level option: -O heap_program

Low level options: -d IU,IF,NF,FM -b exp,pe=[mmm]

Table 4: Heap Usage at Start and End of Main Program

MB Heap | MB Heap | Heap | Max Free |Experiment=1

Used at | Free at | Not |Object at |PE[mmm]

Start | Start | Freed | End |

| | MB | |

91.749 | 3850.251 | 0.003 | 3850.228 |Total

|---

| 93.144 | 3848.856 | 1.600 | 3848.829 |pe.0

S–2376–41 21

Using Cray® Performance Analysis Tools

| 91.549 | 3850.451 | 0.000 | 3850.428 |pe.5

| 91.549 | 3850.451 | -0.000 | 3850.428 |pe.2

|===

Finally, Table 5 shows the PEs having the maximum, median, and minimum
wall clock times, as well as the Total average wall clock time for all PEs.

Notes for table 5:

High level option: -O program_time

Low level options: -d pt -b exp,pe=[mmm]

Table 5: Program Wall Clock Time

Process |Experiment=1

Time |PE[mmm]

6.618120 |Total

|----------------------

| 6.639253 |pe.0

| 6.615430 |pe.2

| 6.597436 |pe.7

|======================

The pat_report options are described in greater detail in Section 2.4,
page 35 and in the pat_report(1) man page.

2.2 In More Depth: pat_build

The pat_build utility is the key component in CrayPat. With one apparent
exception, you must use pat_build to instrument your program before you can
do anything else with CrayPat.

The apparent exception is the pat_hwpc command. In this case, the pat_hwpc
command is merely a wrapper script that provides a simplified user interface to
some CrayPat functions. Behind the scenes, pat_hwpc still requires the CrayPat
module to be loaded beforehand and uses pat_build to create an instrumented
executable.

In all cases, there are two prerequisites for using pat_build:

22 S–2376–41

Getting Started with CrayPat [2]

• The CrayPat module must be loaded into your work environment.

• You must recompile or at least relink your program after the CrayPat module
has been loaded, to ensure that the program contains the link and subroutine
argument information that pat_build requires.

Note: If you forgot to load the CrayPat module before compiling and linking,
a possible remedy is to relink the program after loading the CrayPat module.
This is sufficient to permit the use of pat_build with -g options.

The syntax for the pat_build command is:

pat_build build_options [-o instrumented_program]

original_program

Where original_program is the name of your original compiled and executable
program, and the optional instrumented_program is the name of the instrumented
output file. If you do not specify an output file name, it defaults to
original_program+pat.

2.2.1 Asynchronous (Sampling) Experiments

If any function entry points are instrumented, a trace experiment is performed,
otherwise an asynchronous (sampling) experiment is performed. On Catamount
systems, the default sampling experiment is samp_pc_time; on all other
systems, the default sampling experiment is samp_pc_prof, which is a general
program profile.

Experiments are defined before program execution by setting the
PAT_RT_EXPERIMENT runtime environment variable. The valid asynchronous
experiments are:

samp_pc_prof

(Not supported on Catamount.) Provides the total user time and
system time consumed by a program and its functions. The OS
samples the program counters from each PE upon each clock
interrupt (1000 per second) and collects the data in separate
histograms.

This experiment has the lowest overhead to collect data. It
does not require any other options and does not require setting
any environment variables prior to execution. It samples the
program counter by user and system CPU time and does not
allow the collection of hardware performance counters or call
stack information.

S–2376–41 23

Using Cray® Performance Analysis Tools

samp_pc_time

Samples the program counter at a given time interval. This
returns the total program time and the absolute and relative
times each program counter was recorded. The default interval
is 10,000 microseconds. Optionally, this experiment records the
values of the hardware performance counters specified in the
comma-separated list in the runtime variable PAT_RT_HWPC.

The default interval timer used measures user CPU
and system CPU time. This is changed using the
PAT_RT_INTERVAL_TIMER runtime environment variable.

samp_pc_ovfl

Samples the program counter at a given overflow of a
hardware performance counter. The hardware counter
and its overflow value are separated by a colon and
specified in a comma-separated list in the runtime variable
PAT_RT_HWPC_OVERFLOW. Optionally, this experiment records
the values of the hardware performance counters specified in the
comma-separated list in the runtime variable PAT_RT_HWPC.
The default overflow counter is cycles and the default overflow
frequency equates to an interval of 1,000 microseconds.

samp_cs_time

Samples the call stack at a given time interval. This returns the
total program time and the absolute and relative times each call
stack counter was recorded, and is otherwise identical to the
samp_pc_time experiment.

samp_cs_ovfl

Samples the call stack at a given overflow of a hardware
performance counter. This experiment is otherwise identical to
the samp_pc_ovfl experiment.

samp_ru_time

Samples system resources at a given time interval. This
experiment is otherwise identical to the samp_pc_time
experiment.

24 S–2376–41

Getting Started with CrayPat [2]

samp_ru_ovfl

Samples system resources at a given overflow of a hardware
performance counter. This experiment is otherwise identical to
the samp_pc_ovfl experiment.

samp_heap_time

Samples dynamic heap memory management statistics at a
given time interval. This experiment is otherwise identical to the
samp_pc_time experiment.

samp_heap_ovfl

Samples dynamic heap memory management statistics at a given
overflow of a hardware performance counter. This experiment is
otherwise identical to the samp_pc_ovfl experiment.

For more information, see the pat(1) and pat_build(1) man pages.

2.2.2 Trace Groups: -g options

The easiest way to instrument a program is by using the -g tracegroup option to
select a predefined experiment. This option enables you to instrument all relevant
function entry point references belonging to a specified tracing group, while
collecting data for only those function entry points that are actually referenced
during program execution. For example, to trace all MPI calls in a program, type
the following command.

> pat_build -g mpi myprogram

The -g option accepts the following tracegroup names.

Table 2. pat_build -g tracegroups

Tracegroup Description

heap Dynamic heap information

io Includes the stdio and sysio groups

math ANSI math library calls

mpi MPI calls

shmem SHMEM calls

S–2376–41 25

Using Cray® Performance Analysis Tools

Tracegroup Description

stdio All library functions that accept or return the
buffered I/O (FILE *) construct

sysio System I/O calls

system System calls

Note: The pat_build -g option is not the same as the pat_run or
pat_hwpc -g options, as the pat_build -g option accepts different
arguments. The pat_run and pat_hwpc -g options reference hardware
counter groups. The pat_build -g option references software function calls.
For more information about the pat_run and pat_hwpc -g options, see
Section 2.5, page 56.

The pat_build -g tracegroup option may be used in combination with other
build options. For example, to trace all MPI calls except the MPI_Barrier call,
type the following command.

> pat_build -g mpi -T !MPI_Barrier myprogram

Note: Depending on your choice of shell, it may be necessary to precede the
exclamation point in the above command line with an escape character.

For more information about the -T option, see Section 2.2.4, page 27.

2.2.3 Trace Libraries: -t option

Another way to instrument a program is by using the -t tracefile option to
predefine a library of traceable function entry points. The difference between the
-g tracegroup and -t tracefile options is that trace files are flat text files that you
can create, copy, and revise as needed in order to create customized libraries
for instrumenting your code.

The -t tracefile option is especially useful for tracing user-defined functions.
Because the trace files are flat text files, you can place a list of the user-defined
functions you want to trace in a file and then specify this file using the -t option.

26 S–2376–41

Getting Started with CrayPat [2]

2.2.4 Trace Functions: -T options

The pat_build -T option enables you to prevent tracing of specific functions.
For example, to trace all MPI calls except MPI_Bcast, type the following
command.

> pat_build -g mpi -T !MPI_Bcast myprogram

The -T option is most often used with the -g tracegroup or -t tracefile options to
exclude calls that are part of the larger trace group. The -T option supports the
following arguments:

Table 3. pat_build -T Arguments

Argument Description

-T !function Do not trace the specified function.

-T / If the function name contains a slash character,
interpret the string as a regular expression. If
more than one regular expression is specified,
the union of all regular expressions is taken. All
function entry points that match at least one of
the regular expressions are added to the list of
the function entry points that are not traced. The
match is case-sensitive.

-T i/ Ignore case when matching.

-T x/ Use extended regular expressions.

Note: Depending on your choice of shell, it may be necessary to precede the
exclamation point in the preceding example with an escape character.

2.2.5 User-defined Functions: -u option

The pat_build -g, -t, and -T options are typically used to instrument library
and system calls. Use the -u option to create trace intercept routines for the
function entry points that are defined in your original program. For example, to
trace all user-defined functions in myprogram, type this command.

> pat_build -u myprogram

Note: If your code contains Fortran 90 modules, and you are using a PGI
Fortran compiler earlier than release 6.1-4, do not use the -u option. Instead,
use the compiler options described in Section 2.2.6, page 28.

S–2376–41 27

Using Cray® Performance Analysis Tools

The -u option accepts no arguments. However, it can be combined with other
build options either to include or exclude other functions. For example, to trace
all MPI calls and all user-defined functions in your program, type this command.

> pat_build -g mpi -u myprogram

Alternatively, to trace all user-defined functions in your program except
hello_world, type this command.

> pat_build -u -T !hello_world myprogram

Note: The -u option applies to all function entry points contained in
relocatable object and archive files that are writeable by the user. To prevent
tracing of entry points in a given file, turn off the write permissions to that file.
To prevent tracing of an individual entry point, use the -T !entry_point
option.

2.2.6 Using Compiler Options: -w option

As an alternative to the -u option, you can use compiler options to insert calls
to hooks at the entry and return points of user-defined functions. This is a
two-stage process that requires compiling the code with the appropriate compiler
options set to create the hooks, then instrumenting the code with the appropriate
pat_build options set to take advantage of the compiler hooks.

For example, if you are using the PGI C compiler, type the following commands
to compile and link your program.

> cc -Mprof=func -c myprogram.c

> cc -Mprof=func -o myprogram myprogram.o

Similarly, if you are using the GNU C compiler, type the following commands.

> qk-gcc -finstrument-functions -c myprogram.c

> qk-gcc -o myprogram myprogram.o

After the code is compiled, use the pat_build -w option to create trace intercept
routines for those function entry points for which no trace intercept routine
already exists.

> pat_build -w myprogram

When instrumented in this manner, data is recorded for calls that have been
inlined, and call stack and hardware performance counter data may be recorded
(depending on runtime environment variable settings), but formal function
argument and return values are not supported.

28 S–2376–41

Getting Started with CrayPat [2]

The -w option can be used with all other pat_build options.

The -w option is required when tracing a subset of user-defined functions with
the -t or -T options.

Note: The runtime environment variable PAT_RT_TRACE_HOOKS controls
whether data is recorded for those functions that contain compiler hooks.
If PAT_RT_TRACE_HOOKS is set to 1 or not set at all, data is recorded. If
PAT_RT_TRACE_HOOKS is set to 0, data is not recorded. For more information
about runtime environment variables, see Section 2.3, page 33.

2.2.7 Build Directives: -d, -D, and -z options

In addition to the simpler build options, you can use build directives to give
pat_build more precise instructions regarding how to evaluate and produce
instrumented programs. As with the -t and -T options, there are two build
directives options:

• To specify an individual directive, use the -D option.

• To specify a file containing a list of directives, use the -d option.

A third option, -z, instructs pat_build to ignore the default build directives
file during startup.

For example, to instrument a program using the default build directives, type
this command.

> pat_build -d $PAT_ROOT/lib/cnos64/BuildDirectives myprogram

Alternatively, to increase the maximum number of entry point functions that can
be traced to 1,000, type this command.

> pat_build -D tracemax=1000 myprogram

As with the -t option, build directives files are flat text files that you can
view, copy, edit, or revise as needed in order to create customized libraries for
instrumenting your code. The -D option can accept, and the build directives file
can contain, any of the following directives.

S–2376–41 29

Using Cray® Performance Analysis Tools

Table 4. Build Directives

Argument Description

invalid=entry_point Prevent instrumentation of the specified entry_point.

link-fatal=operand[, operand...] Specifies one or more operands that, if present in the original
link, will prevent the instrumented link from occurring.

link-ignore=operand[, operand...] Specifies one or more operands that, if present in the original
link, will not be passed down to the instrumented link.

link-ignore-libs=lib[, lib...] Specifies one or more object or archive files that, if present
in the original link, will not be passed down to the
instrumented link.

link-ignore-empty-libs=lib[, lib...] Specifies one or more archive files that, if of zero size, are not
passed down to the instrumented link.

link-instr=operand[, operand...] Specifies one or more operands to include in the
instrumented link.

link-objs=ofile[, ofile...] Specifies one or more object files to include in the
instrumented link.

trace=entry-point A function entry-point in the original program is traced. If
entry-point is preceded by the ! character, function entry-point
is not allowed to be traced. See -T for more details.

tracemax=n The maximum number of entry point functions in the
original program that can be traced. The default is 1024.
Tracing a large number of entry points results in degraded
performance of the instrumented program at run-time.

trace-obj-size=min,max Specifies the minimum and maximum size in bytes of object
and archive files to trace.

trace-text-size=min,max Specifies the minimum and maximum size in bytes of text
sections in function entry points to trace.

varargs=value If set to non-zero, function entry points that accept variable
arguments can be traced.

The default build directives file can be found in
$PAT_ROOT/lib/cnos64/BuildDirectives and the contents
of this file are listed in Appendix B, page 153.

30 S–2376–41

Getting Started with CrayPat [2]

2.2.8 pat_build Environment Variables

The CrayPat environment variables that affect program execution and data
collection are discussed in Section 2.3, page 33. However, there are three
environment variables that specifically affect the behavior of pat_build and
the creation of instrumented programs.

Table 5. pat_build Environment Variables

Environment Variable Description

PAT_BUILD_LINK_DIR To create an instrumented program,
pat_build requires access to the
original .o and .a files used to
create the executable program. If
the program was compiled and
linked in a directory other than the
current working directory, set this
environment variable to point to the
directory containing the original .o
files before invoking pat_build.

PAT_BUILD_NOCLEANUP pat_build normally creates and
deletes a number of temporary files
as part of the process of creating
an instrumented program. If this
environment variable is set to a value
other than zero, the temporary files
are not deleted.

PAT_BUILD_OPTIONS Define default build options that will
be evaluated before any options on
the pat_build command line. For
example, to prevent the instrumenting
of a known invalid entry point, you
could set this environment variable to
-D invalid=entry_point.

S–2376–41 31

Using Cray® Performance Analysis Tools

2.2.9 File Handling: -o, -f, and -A options

The pat_build command supports a number of options that determine how
files are handled. By default, pat_build produces an instrumented program
having the same name as the original executable program, plus the +pat
extension. For example, the following command produces the instrumented
executable file myprogram+pat.

> pat_build -u myprogram

To specify a different name for the instrumented file, either specify the output
file name as the final argument or use the -o option. For example, if you are
instrumenting a program for MPI tracing, you could type either of the following
commands, and in either case produce an instrumented program named
myprogram+mpi+pat.

> pat_build -g mpi -o myprogram+mpi+pat myprogram

> pat_build -g mpi myprogram myprogram+mpi+pat

The ability to specify the name of the instrumented program is useful if you want
to create multiple test programs, each instrumented to examine a different aspect
of program execution, and then execute the instrumented programs in sequence
as part of a batch job.

Alternatively, if you are using pat_build as part of a script or make file and
want to avoid possible write permission errors, or want to avoid filling your
working directories with old versions of instrumented programs, use the -f
option to force pat_build to overwrite an existing file with the same name.

One more pat_build option that deserves mention is -A. By default, the
execution of an instrumented program produces a data file in the CrayPat binary
.xf format. If you specify the -A option, the instrumented program instead
produces a data file in the Cray Apprentice2 .ap2 format.

Note: Specifying the pat_build -A option results in an instrumented
executable that may be substantially larger than a conventionally instrumented
program, which in turn increases the amount of memory required for program
execution and thus increases the amount of memory swapping required during
program execution. If program size and memory usage become an issue, you
can achieve the same result by instrumenting the program without the -A
option and then using pat_report -f ap2 later to convert the resulting
.xf data file to .ap2 format.

The -A option is not supported on Cray X2 systems.

32 S–2376–41

Getting Started with CrayPat [2]

2.3 In More Depth: program execution

After you have created an instrumented program, you must run it in order to
collect performance data. The basic aspects of running a program on a Cray XT
series system are covered in Procedure 1, page 12, and in more detail in the
Cray XT Series Programming Environment User's Guide and yod(1) man page.

There are two important things to remember when executing a CrayPat
instrumented program on your system.

• You must have the CrayPat module loaded before you launch the
instrumented program.

• If you are running a multiple-processor program such as an MPI or SHMEM
application, you must launch your program such that the data file created by
CrayPat during program execution is written to a file system that supports
record-locking, such as the Lustre parallel file system. This means that you
must either launch the program from a working directory residing on a Lustre
mount point, or you must set runtime environment variables to redirect the
CrayPat output to a target directory mounted on a Lustre file system.

2.3.1 Batch Environments

By default, batch sessions begin in your home directory and with your default
set of modules and environment variables loaded. If you are working in a batch
environment, you can set up your batch script to load the CrayPat module again
and reset your environment variables after entering the batch environment.

Alternately, if you use the qsub -IV command to launch an interactive batch
session, the batch session inherits the module and environment variable settings
from the shell that was used to invoke the batch session. However, if you launch
the batch session from a directory other than your home directory, you will need
to return to your working directory in order to run your instrumented program.

2.3.2 Runtime Environment Variables

CrayPat supports a large number of environment variables that enable you
to specify experiment parameters at run time, control the amount of data
collected, and control aspects of the program's execution. The CrayPat runtime
environment variables are listed in the pat(1) man page.

S–2376–41 33

Using Cray® Performance Analysis Tools

For example, if you use the C shell and want to discover which function
entry points will be traced without executing the entire program, type these
commands.

> setenv PAT_RT_EXIT_AFTER_INIT 1

> setenv PAT_RT_TRACE_FUNCTION_DISPLAY 1

> yod myprogram+pat

These environment variable settings cause the instrumented program to exit
immediately after initialization and print a list of the functions that would have
been traced to stdout.

2.3.2.1 Redirecting CrayPat Output Files

If you are working with MPI or SHMEM programs and need to redirect the
CrayPat output to a Lustre file system, you first need to identify the Lustre
mount points and create a writable target directory on a Lustre mount point,
as described in Section 1.1.4, page 4. After you have created a suitable target
directory on a Lustre mount point, set the PAT_RT_EXPFILE_DIR runtime
environment variable to redirect the CrayPat output to this target directory. For
example, if you use the C shell, type the following command.

> setenv PAT_RT_EXPFILE_DIR /lus/nid/dir

Alternately, you can set PAT_RT_EXPFILE_PER_PROCESS to a non-zero value,
in which case CrayPat creates a target directory and one output file per PE, and
this target directory can reside on any file system including ufs. (By default, this
target directory and data files are written to the execution directory.) However,
use this option with caution, as a large MPI program can easily generate
thousands of data files, and if the number of data files exceeds the number of
open files allowed on the file system, a fatal runtime error results.

2.3.2.2 Capturing Hardware Counter Data

CrayPat runtime environment variables enable you to collect a wide variety of
performance analysis data using the same instrumented program. In particular,
different sets of hardware performance counter data can be collected by changing
the PAT_RT_HWPC environment variable. For example, if you are using the Korn
shell and want to collect information about L1 and L2 cache usage from the
hardware performance counters, type these commands.

$ export PAT_RT_HWPC=2

$ yod myprogram+pat

34 S–2376–41

Getting Started with CrayPat [2]

To use the same instrumented program to collect information about
floating-point operations instead, type these commands.

$ export PAT_RT_HWPC=4

$ yod myprogram+pat

You can even select individual hardware performance counters to monitor. For
example, to collect the total numbers of cycles, instructions completed, and
unconditional branches, type these commands.

$ export PAT_RT_HWPC=PAPI_TOT_CYC,PAPI_TOT_INS,PAPI_BR_UCN

$ yod myprogram+pat

The hardware performance counter groups and names are listed in Appendix
A, page 149.

2.3.2.3 Controlling Data File Size and Content

Environment variables can also be used to control the size and content of the data
files generated during program execution. For example, by default, call stacks
are traced all the way back to the __start entry point. To limit the amount of
data collected and the sizes of the corresponding data files, you could type the
following commands to reduce the depth of call-stack tracing so that only the
caller of the entry point is recorded.

$ export PAT_RT_CALLSTACK=1

$ yod myprogram+pat

2.4 In More Depth: pat_report

Depending on the options you selected when you used pat_build to
instrument your program and the environment variables you set before executing
your program, the successful execution of the instrumented program produces
one or more data files containing the performance analysis information that
was captured during program execution. These data files can be in one of
several different formats, again depending on the options you selected when
you instrumented the program, and may contain an enormous amount of
information, not all of which may be readily useful.

S–2376–41 35

Using Cray® Performance Analysis Tools

Note: In earlier versions, CrayPat by default produced one report data file
per process. In CrayPat release 3.1 the default has been changed to produce
a single report data file for the entire program, as a large MPI or SHMEM
program can exceed the number of open files allowable on most file systems.
For more information about changing the default number and locations of
output files, see Section 2.3.2.1, page 34.

Use pat_report to turn these raw data files into succinct, readable, and useful
reports.

The syntax for the pat_report command is as follows:

pat_report [report_options] data

Where data may be either a single file in .xf, .ap2, .xml, or .hwpc format, or a
directory containing such files.

Note: If you use the PAT_RT_EXPFILE_PER_PROCESS runtime environment
variable to generate one data file per PE, your data file directories must contain
only the results from a single experiment and only one type of data file. If you
use the pat_report options to export data from one file type to another, and
leave both your source and target files in the same directory, this can produce
misleading reports as data may be duplicated or consolidated incorrectly.

The easiest way to use pat_report is without any options. For example, if
the successful execution of program myprogram+pat has produced a data file
named myprogram+pat+29 in directory /lus/nid00008/temp, type this
command to generate the default report.

> pat_report /lus/nid00008/temp/myprogram+pat+29

This produces a summary report similar to the example shown in Section 2.1,
page 12, but the report varies depending on the experiment that was performed
and the data that was captured. By default, the report is sorted by the data in
the left-most column.

Note: The pat_report utility typically requires that the source files and
instrumented executable be in the same relative locations and have the same
names as they had when the program was compiled, instrumented, and
executed. If you have moved or renamed the instrumented executable, use
the -i option to specify the new name or relative path. For example, if the
executable was compiled and instrumented in your /working directory but
executed in your lus/nid00008/running directory, you could type the
following report option to point to the location of the necessary files.

> pat_report -i /ufs/home/smith/working myprogram+pat+29

36 S–2376–41

Getting Started with CrayPat [2]

The following sections describe the various report options.

2.4.1 Standard Reports: -O options

The easiest way to produce a meaningful report is by using the -O keyword
option to select one of the predefined reports. For example, assuming that you
instrumented your program to collect MPI data, you can type the following
command to produce a report that highlights MPI performance data.

> pat_report -O mpi myprogram+pat+29

The -O option accepts the following keyword names:

Table 6. Standard Reports

Keyword Description

profile Show data by function name only

callers (or ca) Show function callers (bottom-up
view)

calltree (or ct) Show calltree (top-down view)

ca+src Show line numbers in callers

ct+src Show line numbers in calltree

heap Implies heap_program.
heap_hiwater, and heap_leaks.
Instrumented programs must be
built using the pat_build -g
heap option in order to show
heap_hiwater and heap_leaks
information.

heap_program Compare heap usage at the start and
end of the program, showing heap
space used and free at the start, and
unfreed space and fragmentation at
the end.

S–2376–41 37

Using Cray® Performance Analysis Tools

Keyword Description

heap_hiwater If the pat_build -g heap option
was used to instrument the program,
this report option shows the heap
usage "high water" mark, the total
number of allocations and frees, and
the number and total size of objects
allocated but not freed between the
start and end of the program.

heap_leaks If the pat_build -g heap
option was used to instrument the
program, this report option shows the
largest unfreed objects by callsite of
allocation and PE number.

load_balance Implies load_balance_program,
load_balance_group, and
load_balance_function. Show
PEs with maximum, minimum, and
median times.

load_balance_program

load_balance_group

load_balance_function

For the whole program, groups, or
functions, respectively, show the
imb_time (difference between
maximum and average time
across PEs) in seconds and the
imb_time% (imb_time/max_time
* NumPEs/(NumPEs - 1)). For
example, an imbalance of 100% for a
function means that only one PE spent
time in that function.

load_balance_sm If the pat_build -g mpi option
was used to instrument the program,
this report option shows the load
balance by group with sent-message
statistics.

mpi Show MPI sent-message statistics

38 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

program_time Shows which PEs took the maximum,
median, and minimum time for the
whole program.

read_stats

write_stats

If the pat_build -g io option was
used to instrument the program, these
options show the I/O statistics by
filename and by PE, with maximum,
median, and minimum I/O times.

Note: The pat_report -O options are in some cases similar to but not the
same as the pat_build -g options. If pat_report does not appear to be
accepting standard report options, verify that you are not unintentionally
substituting pat_build -g options for pat_report -O options.

When you select one of the standard reports, note the -O, -d, and -b options
that appear at the top of every table. For example, this output was generated by
using the -O mpi report option.

Notes for table 1:

High level option: -O mpi

Low level options: -d sc@,mb1..7 -b exp,fu,ca,pe=[mmm]

This table shows only lines with Sent Msg Count > 0.

Table 1: MPI Sent Messages Stats by Bucket

Sent | 256B<= |Experiment=1

Msg | MsgSz |Function

Count | <4KB | Caller

| | PE[mmm]

34560 | 34560 |Total

|----------------------------

| 34560 | 34560 |mpi_send_

| | | snd_real_

| | | sweep_

| | | inner_

| | | inner_auto_

| | | MAIN_

S–2376–41 39

Using Cray® Performance Analysis Tools

|||||||----------------------

||||||| 2880 | 2880 |pe.6

||||||| 2160 | 2160 |pe.8

||||||| 1440 | 1440 |pe.0

|============================

To understand the effect of the -O option, compare the preceding example,
which was generated using the -O mpi option, to the following report, which
was generated from the same data file but using the -O load_balance option.
Remember, this report shows only the three processors having the maximum,
median, and minimum times for each function.

Notes for table 1:

High level option: -O load_balance_program

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b exp,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Load Balance across PE's

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |PE[mmm]

100.0% | 100.0% | 12.322133 | 142004 |Total

|--

| 6.3% | 6.3% | 12.336392 | 5999 |pe.0

| 6.2% | 56.3% | 12.321176 | 8875 |pe.2

| 6.2% | 100.0% | 12.320670 | 11755 |pe.10

|==

Notes for table 2:

High level option: -O load_balance_group

Low level options: -d ti%@0.05,cum_ti%,ti,tr \

-b exp,gr,pe=[mmm]

This table shows only lines with Time% > 0.05.

40 S–2376–41

Getting Started with CrayPat [2]

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 2: Load Balance across PE's by FunctionGroup

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Group

| | | | PE[mmm]

100.0% | 100.0% | 12.322133 | 142004 |Total

|--

| 82.9% | 82.9% | 10.217278 | 72196 |USER

||---

|| 6.6% | 6.6% | 10.732211 | 3076 |pe.0

|| 6.2% | 57.3% | 10.197942 | 4512 |pe.7

|| 6.0% | 100.0% | 9.811813 | 4512 |pe.14

||===

| 17.1% | 100.0% | 2.104856 | 69808 |MPI

||---

|| 7.5% | 7.5% | 2.509049 | 4363 |pe.14

|| 6.3% | 61.3% | 2.112527 | 5803 |pe.9

|| 4.8% | 100.0% | 1.604181 | 2923 |pe.0

|==

Notes for table 3:

High level option: -O load_balance_function

Low level options: -d ti%@0.05,cum_ti%,ti,tr \

-b exp,gr,fu,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 3: Load Balance across PE's by Function

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Group

| | | | Function

S–2376–41 41

Using Cray® Performance Analysis Tools

| | | | PE[mmm]

100.0% | 100.0% | 12.322133 | 142004 |Total

|--

| 82.9% | 82.9% | 10.217278 | 72196 |USER

||---

|| 98.0% | 98.0% | 10.008085 | 192 |sweep_

|||--

||| 6.5% | 6.5% | 10.421984 | 12 |pe.4

||| 6.2% | 57.3% | 9.998248 | 12 |pe.7

||| 6.0% | 100.0% | 9.609786 | 12 |pe.10

|||==

|| 1.5% | 99.5% | 0.154087 | 192 |source_

|||--

||| 6.5% | 6.5% | 0.159720 | 12 |pe.0

||| 6.2% | 56.9% | 0.152020 | 12 |pe.7

||| 6.2% | 100.0% | 0.151800 | 12 |pe.13

|||==

|| 0.2% | 99.7% | 0.025529 | 192 |flux_err_

|||--

||| 6.6% | 6.6% | 0.026813 | 12 |pe.0

||| 6.1% | 57.3% | 0.025058 | 12 |pe.6

||| 6.1% | 100.0% | 0.024846 | 12 |pe.12

|||==

|| 0.1% | 99.8% | 0.008031 | 34560 |snd_real_

|||--

||| 7.6% | 7.6% | 0.009783 | 2880 |pe.9

||| 6.3% | 62.1% | 0.008153 | 2160 |pe.4

||| 4.6% | 100.0% | 0.005951 | 1440 |pe.0

||===

| 17.1% | 100.0% | 2.104856 | 69808 |MPI

||---

|| 83.5% | 83.5% | 1.756801 | 34560 |mpi_recv_

|||--

||| 8.5% | 8.5% | 2.375658 | 1440 |pe.15

||| 6.3% | 64.8% | 1.757095 | 2880 |pe.9

||| 3.9% | 100.0% | 1.086069 | 1440 |pe.0

|||==

|| 10.7% | 94.2% | 0.225926 | 512 |mpi_allreduce_

|||--

||| 13.1% | 13.1% | 0.473250 | 32 |pe.0

||| 5.9% | 78.2% | 0.214557 | 32 |pe.9

||| 0.1% | 100.0% | 0.002963 | 32 |pe.15

42 S–2376–41

Getting Started with CrayPat [2]

|||==

|| 3.0% | 97.2% | 0.063774 | 34560 |mpi_send_

|||--

||| 7.8% | 7.8% | 0.079786 | 2880 |pe.10

||| 6.3% | 63.5% | 0.064042 | 2160 |pe.2

||| 4.4% | 100.0% | 0.044733 | 1440 |pe.0

|||==

|| 1.8% | 99.0% | 0.036854 | 64 |mpi_bcast_

|||--

||| 6.7% | 6.7% | 0.039335 | 4 |pe.15

||| 6.7% | 60.0% | 0.039309 | 4 |pe.10

||| 0.0% | 100.0% | 0.000035 | 4 |pe.0

|||==

|| 1.0% | 100.0% | 0.021494 | 48 |mpi_barrier_

|||--

||| 6.7% | 6.7% | 0.023148 | 3 |pe.14

||| 6.7% | 60.2% | 0.022898 | 3 |pe.7

||| 0.0% | 100.0% | 0.000089 | 3 |pe.0

|==

Remember that the -O options are merely predefined sets of -d and -b options,
and you can copy and modify these options as desired to define additional
reports. For example, to create a customized version of the MPI report, you could
copy and modify the report definition shown in the example, save it in a text file
named my_mpi_report, then specify it later using the -O option, as shown in
this example.

> pat_report -O my_mpi_report myprogram+pat+29

2.4.2 Creating Customized Reports

In addition to the standard reports, pat_report enables you to create highly
customized reports tailored to your specific needs. This is done by specifying the
data to be included in the report, specifying how the data is to be aggregated and
labeled, and specifying how the resulting information is to be displayed.

If needed, you can save your customized report definitions in plain text files
and then reuse the customized report definition later by specifying the text file
name with the pat_report -O option.

S–2376–41 43

Using Cray® Performance Analysis Tools

2.4.2.1 Selecting Data: -d and -P options

There are two report options that determine how data is selected for inclusion in
your report.

The -d options determine the actual data that is used to create the report
content. The default -d options vary depending on the experiment that was
performed; alternately, the -d options may be explicitly specified in the form of a
comma-delimited list, using one or more of the keywords shown in Table 7. You
can shorten keywords to two or more unique characters.

Table 7. -d Option Keywords

Keyword Description

counters (or co) Hardware performance counter values

P All raw hardware performance counters plus
derived metrics

counter_name Individual hardware performance counter
names such as PAPI_TOT_INS, as described
in Appendix A, page 149

input (or io) The number of bytes read, if tracing I/O

output (or ou) The number of bytes written, if tracing I/O

samples (or sa) The number of samples taken, if instrumented
for a sampling experiment

traces (or tr) The number of entries to a trace function, if
instrumented for a tracing experiment

time (or ti) The time as taken from rtc timestamps, if
instrumented for a tracing experiment

flops (or fl) The number of floating point operations per
second, from counters

mflops (or mf) The number of floating point operations in
millions per second

pt The total time per process

tt The total time per thread

The following heap data is always collected at the beginning and end of the
main program.

44 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

FM Final Max Free Object (MB)

HF Heap Free Delta (MB)

IF Init Heap Free (MB)

IU Init Heap Used (MB)

NF Heap Not Freed (MB)

If the main program is instrumented using the pat_build -g heap option,
the following heap data is also collected.

ab Tracked MBytes not freed

ac Tracked objects not free

am Tracked heap highwater MBytes

lb Tracked MBytes not freed

ta Total allocs

tb Total alloc bytes

tf Total frees

ua Allocs not tracked

ub MBytes not tracked

uf Frees not tracked

If the main program is instrumented using the pat_build -g io option,
the following I/O data is collected.

rt Read time

wt Write time

rb Read MB

wb Write MB

rR Read rate in MB/sec

wR Write rate in MB/sec

rd Reads (number of calls)

wr Writes (number of calls)

rC Read bytes/call

wC Write bytes/call

S–2376–41 45

Using Cray® Performance Analysis Tools

Keyword Description

If the main program is instrumented using the pat_build -g mpi option,
the following message passing data is collected.

sc Sent message count

sm Sent message total bytes

sz Sent message average size

mb1 Number of messages smaller than 16 bytes

mb2 Number of messages equal to or greater than
16 bytes but smaller than 256 bytes.

mb3 Number of messages equal to or greater than
256 bytes but smaller than 4 KB.

mb4 Number of messages equal to or greater than
4 KB but smaller than 64 KB.

mb5 Number of messages equal to or greater than
64 KB but smaller than 1 MB.

mb6 Number of messages equal to or greater than
1 MB but smaller than 16 MB.

mb7 Number of messages equal to or greater than
16 MB.

In addition, each -d option that is not a rate or an average can have one or more
of the following sub-items, where X is the -d option keyword.

Table 8. -d Option Values

Keyword Description

X% Percent of total, or of next aggregate, value

avg_X Mean of the X values for all PEs

avg_X% Mean of the X values for all PEs, expressed as a
percentage

cum_X Cumulative value through this line

cum_X% Cumulative value through this line, expressed as a
percentage

imb_X Load imbalance, defined as max_X - avg_X

46 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

imb_X% Load imbalance, defined as imb_X/max_X *
npes/(npes-1) * 100

This definition provides a value of 100% in the case
of maximum imbalance, when only one PE has a
non-zero value for X. This value is defined only
when the number of PEs (npes) is greater than one.

max_X Maximum value of X for all PEs

max_X% Maximum value of X for all PEs, expressed as a
percentage

min_X Minimum value of X for all PEs

min_X% Minimum value of X for all PEs, expressed as a
percentage

sd_X Standard deviation of X for all PEs

sd_X% Standard deviation of X for all PEs, expressed as a
percentage

You can specify threshold values for each -d option keyword, so that data that
does not meet the threshold value is not displayed.

Table 9. -d Option Thresholds

Keyword Description

@ Show only lines with values exceeding zero

@value Show only lines with values exceeding the literal
value specified

%@value Specify the threshold as a percentage or other
derived value

For example, to include the percentages of total time and cumulative time spent
in each function, but exclude those functions which took 0.05% or less of the total
running time, type the following command.

> pat_report -d time%@0.05,cum_time% myprogram+pat+29

S–2376–41 47

Using Cray® Performance Analysis Tools

Finally, by default, the uninteresting callers in any report that shows callers or the
call-tree are not displayed. To suppress this automatic pruning of data, use the
-P option. This exposes the CrayPat function wrappers used for tracing as well
as internal library functions.

2.4.2.2 Data Aggregation: -b options

Much of the data captured by CrayPat is not readily meaningful in raw form
but must be aggregated, labeled, or otherwise processed in order to become
intelligible. Use the pat_report -b options to do so.

The default -b options vary depending on the experiment performed.
Alternately, the -b options may be specified explicitly in the form of a
comma-delimited list of colon-separated items, using one or more of the
keywords shown in Table 10. You can shorten keywords to two or more unique
characters.

Specifying multiple -b options produces multiple tables. Each table header
shows the -d and -b options used to produce that table.

Table 10. -b Option Keywords

Keyword Description

address (or ad) Shown in hex

argument (or ar) For tracing experiments

blocks (or bl) Places where breakpoints can be set in the
debugger

callers (or ca) If tracing or sampling callstacks

calltree (or ct) If tracing or sampling callstacks

experiment (or ex) Label used if working with data from
multiple experiments. See Section 2.4.3,
page 53

filename (or fi) I/O source or destination

fildes (or fd) File descriptors used for I/O

function (or fu) Function names; this includes labels from
PAT_region_begin calls

group (or gr) Groups of functions, such as USER, MPI,
I/O, and so on

48 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

lines (or li) Line number in the relevant source file

pe[mmm] Processing element (CPU or core). [m] is
used to indicate exceptional values. For
example, pe[mmm] displays the maximum,
median, and minimum values.

record (or rec) The record number in the data file

return (or ret) Function return values

source (or so) Source file names

stacksize (or st) If recording callstacks, the stack size upon
entry

thread (or th) If working with a multithreaded program,
the thread order

totals (or to) Show totals only for the entire program

Each item in the comma-delimited list gives a level in the table, labeled by its
colon-separated items. For example, -b function:source,line produces a
table with a line for each function, showing data totals labeled by the name of the
function and the name of its source file. Below the line for each function is a set
of indented lines showing data totals for the lines in that function, labeled by
line number.

In some cases it can be helpful to reduce a large table to selected lines. Do this by
appending a selection specification to one or more of the -b option keywords.
Selection specifications can be either regular expressions or literal values; for
example, to show only MPI functions on the report, you could include -b
function='/MPI*' in your report definition.

The pe keyword supports a code that is used to indicate that only the exceptional
values should be reported. These values are:

pe=[m] Display only the PE with the maximum
value

pe=[mm] Display only the two PEs with the maximum
and minimum values

pe=[mmm] Display only the three PEs with the
maximum, median, and minimum values

S–2376–41 49

Using Cray® Performance Analysis Tools

2.4.2.3 Report Appearance: -s options

After you have selected the data to include in the report and have determined
how to aggregate it, use the -s options to define the details of the report's
appearance, if wanted. As with the -d and -b options, the -s options are
specified in the form of a comma-delimited list using the keywords shown in
Table 11. In cases where more than one keyword is shown on a line, the first
keyword is the default value.

The -s options are primarily cosmetic in nature and are typically used only when
preparing performance analysis reports for presentations.

Table 11. -s Option Keywords

Keyword Description

aggr_bb=how | aggr_bb_dd=how Use this option to specify how the data item
dd specified in the -d option is aggregated for
the by item bb specified in the -b option. The
first form specifies how for all data items. The
supported values are sum, max, and avg. The
default is sum, except that aggr_pe_time and
aggr_pe_cycles have default value avg, to
give derived metrics such as mflops for the whole
program rather than per pe.

arguments="list" | "hierarchy" Determines how function arguments are shown.

at_bottom="=" | " " Defines character(s) filling line at bottom of each
subsection containing more than one line of
data. The first alternative is the default. If -s
grid="no" then the second alternative is used.
You are not restricted to = and a blank space; any
string may be specified.

at_left="|" | " " Defines character(s) filling indentation of a
subsection. The first alternative is the default. If
-s grid="no", the second alternative is used.
Any string may be specified.

at_outdent="" | " " Defines character(s) filling line separating a line
from a subsequent line with a less-indented
label. The first alternative is the default. If -s
grid="no", the second alternative is used. Any
string may be specified.

50 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

at_top="-" | "" Defines character(s) filling line at top of each
subsection. If empty, no line appears. The first
alternative is the default. If -s grid="no", the
second alternative is used. Any string may be
specified.

b_opts_trace="exp,function,pe=HIDE" Specifies the default -b options used for tracing
experiments.

block_pad=' ' Specifies padding between columns when data
is shown in rows.

callers="hierarchy" | "list" Determines how callers are shown.

callers_sep="," Defines character separating callers in list form.

calltree="hierarchy" | "list" Determines how callees are shown.

column_pad=" |" | x Specifies the character or chracters separating two
columns, where x indicates the number of blank
spaces between columns. The first alternative
is the default. If -s grid="no", the second
alternative is used, with x=2. Any string may be
specified.

d_opts_trace="time%,cum_time%,time,traces" Specifies the default -d options used for tracing
experiments.

demangle="no" | "yes" Valid only for C++ names.

derived_defs=path_to_file Optional file with user-defined derived metrics
(modeled on $PAT_ROOT/lib/Counters).

ditto=" " | '"' Defines the character or characters shown if
a value is the same as the value immediately
above it. If empty, the value is shown. The first
alternative is the default. If -s grid="no",
the second value is used. Any string may be
specified.

fmt_av="%5.2f" Defines the format in which averages are printed.

fmt_mf="%5.2f" Defines the format in which mflops are printed.

fmt_pct="%4.1f%%" Defines format in which percentages are printed.

fmt_rate="%4.3f" Defines the format in which rates (/sec) are
printed.

S–2376–41 51

Using Cray® Performance Analysis Tools

Keyword Description

fmt_ratio="%5.2f" Defines the format in which ratios are printed.

fmt_ti="%9.6f" Defines the format in which time in seconds is
printed.

fmt_vl="%5.2f" Defines the format in which average vector length
is printed.

grid="yes" | "no" Defines the style of separators between columns
and between subsections in a hierarchical
report. The default is yes. If -s grid="no",
at_top, at_bottom, at_left, at_outdent,
column_pad, and ditto behave as described
above.

list_sep=":" Defines the separator for lists other than callers.

names="linkage" | "source" Specifies whether function names are printed as
shown by nm or in source.

no_data="--" Specifies the placeholder used when there is no
data.

no_label="(N/A)" Specifies the placeholder used when the label is
unknown.

orphan_limit=x Specifies the maximum number of messages
about missing returns.

pe=... Where the value can be ALL, HIDE, or any value
that can be used for PE selection in the -b option
such as '[mmm]' or '[max3,min3]'. This
option overrides the way that per-PE data is
shown in default tables and in tables specified
using the -O option.

percent="absolute" | "relative" Determines whether absolute or relative
percentages are used in grand totals and
subtotals. An absolute percentage is a fraction
of the total for the whole program. A relative
percentage is a fraction of the total in the next
level up in the hierarchy of sub-reports; for
example, a data value for a line in a function
relative to the total for that function.

show_callers="fu" Defines what is shown for a caller. Default is
function name. Must be a sublist of fu, so, li.

52 S–2376–41

Getting Started with CrayPat [2]

Keyword Description

show_data="cols" | "rows" Specifies whether data is shown in columns or
rows. By default, data is shown in columns when
there are five or fewer data items, otherwise in
rows. In rows, rates and percentages within
related data items are also shown.

sort_by_bb="yes" | "no" If item bb is specified using the -b option, this
keyword specifies whether or not to sort by the
label of item bb. For example, if bb is set to li
(line number), enter sort_by_li="yes" to sort
the data by line number.

sort_by_xx="yes" | "no" xx can be either address, block, line, pe, thread,
record, or a 2-letter prefix. The default sort is by
descending value of the leftmost data column.
If xx is a label in a subsection report, the lines in
that subsection are sorted by ascending value of
the label.

source_limit="4" Limit source path length.

2.4.3 Working with Multiple Data Sets

There are times when you may want to perform an experiment, change the
conditions and rerun the experiment, then compare the results from multiple
program runs. The pat_report command can be used to open multiple data
sets simultaneously and compare the data side by side.

For example, to compare the data produced by two different runs of
myprogram+pat, you might type the following command.

> pat_report -O mpi myprogram+pat+29.xf myprogram+pat+30.xf

When opening multiple data sets simultaneously, pat_report normally
integrates the two data sets into one report, with comparable data broken out by
program run. However, when creating report templates for use with multiple
data sets, you can use the -b experiment option as argument; for example, to
identify which run of the program took the longest to complete a given function.

S–2376–41 53

Using Cray® Performance Analysis Tools

2.4.4 pat_report Environment Variables: -z options

The CrayPat environment variables that affect program execution and data
collection are discussed in Section 2.3, page 33. However, there are five
environment variables that specifically affect the behavior of pat_report and
the generation of reports from captured data.

Table 12. pat_report Environment Variables

Environment Variable Description

PAT_REPORT_IGNORE_VERSION If set, turns off the check that verifies
that the version of CrayPat used
to generate the report is the same
as the version used to build the
instrumented program.

PAT_REPORT_OPTIONS If set when pat_report is invoked,
evaluates the options in this
environment variable before any
options on the command line. If not
set when pat_report is invoked but
set when the instrumented program
is run, that value, as recorded in the
experiment data file, is used.

If pat_report is invoked with the
-z option, this environment variable
is ignored.

PAT_REPORT_PRUNE_NAME Removes ("prunes") functions by
name from a report. If set to an
empty string, no pruning is done.
Set this environment variable to a
comma-delimited list to replace the
default list (__pat, __wrap, and
so on) or begin the new list with a
comma to append it to the default list.

54 S–2376–41

Getting Started with CrayPat [2]

Environment Variable Description

PAT_REPORT_PRUNE_SRC If set to an empty string, shows
all callers. If not set, the behavior
is the same as if set to '/lib'. If
set to a non-empty string or to a
comma-delimited list of strings, the
report prunes all functions with
source paths containing any of the
substrings specified.

PAT_REPORT_VERBOSE If set, produces more feedback about
the parsing of each input file and
includes in the report the values of all
environment variables that were set at
the time of program execution.

2.4.5 File Handling: -i and -o options

By default, the pat_report command assumes that the source and
instrumented executable files remain in the same location as they were when
the program was compiled, instrumented, and executed. If the instrumented
executable has been moved or renamed, use the pat_report -i option to
specify the location or name of the instrumented executable. For example, if the
executable was compiled and instrumented in your /working directory but
executed in your /running directory, type the following report option to point
to the location of the necessary files.

> pat_report -i ../working myprogram+pat+29.xf

Similarly, by default the pat_report command sends reports to stdout. If you
prefer, you can use the -o option to send the report to a flat text file instead. The
following commands both produce the same result.

> pat_report -o report.txt myprogram+pat+28.xf

> pat_report myprogram+pat+28.xf > report.txt

S–2376–41 55

Using Cray® Performance Analysis Tools

2.4.6 Exporting Data: -f options

The pat_report -f option is used to export data for use by other applications
and to convert data between the various formats supported by CrayPat. For
example, to convert data from the .xf format native to CrayPat to the .ap2
format native to Cray Apprentice2, type the following command.

> pat_report -f ap2 myprogram+pat+32.xf

If you used the PAT_RT_EXPFILE_PER_PROCESS to create a directory
containing individual .xf files for each PE, you do not need to specify the name
of each individual .xf file. Instead, you can specify the directory name on the
pat_report -f ap2 command line and convert the entire directory into a
single .ap2 data file.

Similarly, the -f option can be used to convert .xf or .ap2 files into .xml
format for use by Cray Apprentice2 or any other application that accepts .xml
format input.

The -f option cannot be used to convert .ap2 or .xml files to .xf format.

Note: When you use the -f option, pat_report functions as a data export
tool and the -d, -b, -s, and -O options are ignored.

2.5 Simplified Interfaces

To help you produce useful results faster, the CrayPat tool suite includes two
simplified user interfaces: pat_run and pat_hwpc.

• pat_run is a wrapper script that enables you to use one command line both
to execute an instrumented program and to generate a report.

• pat_hwpc is a wrapper script that enables you to use one command line
to instrument a program (for a limited range of experiments), execute the
program, and report the results.

56 S–2376–41

Getting Started with CrayPat [2]

2.5.1 Execution and Reporting: pat_run

Note: The pat_run command is deprecated and will be removed in a future
release.

The pat_run interface combines program execution and reporting functions into
one command line. After you instrument your program with pat_build, you
can use the pat_run command to both launch your instrumented program and,
upon successful completion of the program run, launch pat_report to view the
results. The syntax for the pat_run command is as follows:

pat_run [run_options] yod [yod_options] program_name

[program_arguments]

Where run_options are the options specific to pat_run, yod_options are the
options specific to yod, program_name is the name of the instrumented executable,
and program_arguments are the runtime arguments specific to the program.

2.5.1.1 Options

On Cray XT series systems, the yod command is a required command-line
argument for pat_run. The yod command and its options must always be the
last argument before the name of the instrumented executable. For example, if
myprogram+pat is an instrumented MPI program that runs on 64 processors,
your pat_run command line might look like this example.

> pat_run -O mpi yod -size 64 myprogram+pat

The pat_run command supports the following report definition options that
are identical to those used by pat_report. For more information about these
options, see Section 2.4, page 35.

• -b

• -d

• -s

• -o

• -O

In addition, the pat_run command supports the following options that are
either unique or shared with pat_hwpc.

S–2376–41 57

Using Cray® Performance Analysis Tools

Table 13. pat_run Options

Option Description

-c string Specifies a string to be recorded as a
comment in the report or data file.

-E Uses the PAT_RT_HWPC environment
variable value, if set.

-e event_spec Specifies a comma-delimited list of
hardware events to be counted. The
valid names are listed in Appendix A,
page 149.

-f Creates the experiment data file only.
Does not create the report file.

-g hardware_counter_group Specifies a hardware performance
counter group. The valid counter
group values are listed in Appendix A,
page 149.

-n Shows the effect of the selected options
but does not execute the instrumented
program.

2.5.1.2 Examples

For example, to run an instrumented program on 64 processors and generate a
report showing the data that has been collected from hardware counter group 1
(mflops, L1 cache accesses and misses, and TLB misses), type a command like
the following example.

> pat_run -g 1 yod -size 64 myprogram+pat

Alternately, you could set an environment variable to collect the same
information, in which case your command lines might look like the following
examples.

> setenv PAT_RT_HWPC 1

> pat_run -E yod -size 64 myprogram+pat

To run the same program and produce a load-balancing report instead, type a
command like this example.

> pat_run -O load_balance yod -size 64 myprogram+pat

58 S–2376–41

Getting Started with CrayPat [2]

2.5.1.3 Output

Upon successful completion of program execution, pat_run creates a
pat_run.PID directory containing the raw data files that have been generated.

Experiment data file(s) written:

pat_run.10/myprogram+pat+1368tdo*.xf

pat_report -o pat_run.10/report pat_run.10

Data file 1/1: [....................]

Created report file: pat_run.10/report

The PID number is changed each time pat_run is used.

In addition to the usual .xf format data file, this directory also contains two
plain text files: command and report. The command file lists the command line
that was used to execute the program and generate the report, while the report
file lists the report that was created from the data. This report is identical to the
results that would be obtained by using the pat_report command to produce a
report from the data in the pat_run.PID directory.

2.5.2 Hardware Counters: pat_hwpc

The pat_hwpc command combines instrumentation, execution, and report
generation into one step. This is a greatly simplified user interface that does
not support the range of options permitted with either the pat_build,
pat_report, or pat_run commands, but it is often the quickest way to acquire
basic hardware performance information.

The syntax for the pat_hwpc command is as follows:

pat_hwpc [hwpc_options] yod [yod_options] program_name

[program_args]

Where hwpc_options are the options specific to pat_hwpc, yod_options are the
options specific to yod, program_name is the name of the instrumented executable,
and program_args are the runtime arguments specific to the program.

Note: On Cray XT series systems, you must have the CrayPat module loaded
in order to use pat_hwpc. If you attempt to run pat_hwpc and the system
returns a Command not found error, the CrayPat module is not loaded.

The pat_hwpc command is intended primarily as a way to read the contents
of the hardware performance counters. These counters can be addressed
individually or as predefined groups. The groups and the individual counter
names are listed in Appendix A, page 149.

S–2376–41 59

Using Cray® Performance Analysis Tools

The basic process of using pat_hwpc follows these steps.

Procedure 2: Using pat_hwpc

1. If you are working with a multiple-processor program such as an MPI or
SHMEM program, verify that you are working in a directory that is mounted
on a file system that supports record-locking, such as the Lustre parallel
file system. Because of the need to generate temporary files in the working
directory during program execution, pat_hwpc cannot run MPI or SHMEM
programs from directories mounted on ufs file systems.

2. Load the CrayPat module.

lus/nid00008/> module load craypat

3. Compile and link your program, taking care to preserve the .o and .a files.

lus/nid00008/> ftn -c myprogram.f

lus/nid00008/> ftn -o myprogram.o

To use pat_hwpc, you must have an uninstrumented version of the
executable. pat_hwpc cannot be used to run an executable that has been
instrumented already using pat_build.

4. Optionally, set runtime environment variables.

lus/nid00008/> setenv PAT_RT_HWPC 1

In this example, the PAT_RT_HWPC environment variable is being set to
monitor hardware counter group 1.

5. Instrument and run the program.

lus/nid00008/> pat_hwpc -E yod -size 16 myprogram

In this example, the -E option is required in order to force the pat_hwpc
command to use the contents of the PAT_RT_HWPC environment variable.

6. Examine the resulting report.

60 S–2376–41

Getting Started with CrayPat [2]

2.5.2.1 Options

On Cray XT series systems, the yod command is used as a command-line
argument for pat_hwpc. The yod command and its options must always be the
last argument before the name of the executable. For example, if myprogram
is a program that runs on 64 processors, your pat_hwpc command line might
look like this example.

lus/nid00008/> pat_hwpc -g 1 yod -size 64 myprogram

In addition, the pat_hwpc command supports the following options that are
either unique or shared with pat_run.

Table 14. pat_hwpc Options

Option Description

-b level Specifies how data is aggregated.
If level is set to total, data is
aggregated for the whole program. If
level is set to pe, data is aggregated by
processing element.

-c string Specifies a string to be recorded as a
comment in the report or data file.

-D u|e|k Displays the count in the user (u),
exception (e), or kernel (k) domain.
The default domain is user.

-e event_spec[,event_spec,event_spec...] Where event_spec is a
comma-delimited list identifying
the individual hardware counter
events to be counted. The valid names
are listed in Appendix A, page 149

-E Use the PAT_RT_HWPC environment
variable value, if set.

-f Creates a data file containing the
hardware performance counter
information in the current directory.
By default, the name of this file is
the name of the original executable
program, followed by an .hwpc suffix
and ending with the process ID.

S–2376–41 61

Using Cray® Performance Analysis Tools

Option Description

-g hardware_counter_group Specifies a hardware performance
counter group. The valid counter
group values are listed in Appendix
A, page 149.

-o output_file Specifies the name of the output file.

-R report_opts Specifies the report_opts to be passed
to pat_report.

-s key=value Specifies either the length of the
column label or the number of spaces
separating the report columns. If
key is label, the value can be either
short, verbose, or abbrev. The
default value is verbose. If key is
column_pad, the value is the number
of spaces separating the report
columns. The default value is 2.

2.5.2.2 Examples

By default, pat_hwpc monitors the following hardware counter and derived
values.

PAPI_STL_ICY Cycles with no instruction issue

PAPI_TOT_INS Total instructions completed

PAPI_FP_INS Floating point instructions

PAPI_TOT_CY Total cycles

User_Cycles Virtual cycles

To instrument and execute the program and then produce a report giving the
default information, type this command.

lus/nid00008/> pat_hwpc yod myprogram

62 S–2376–41

Getting Started with CrayPat [2]

pat_hwpc also supports predefined groups of hardware counters as described
in Appendix A, page 149. To instrument the program to record cache (hardware
counter group 2) information, then execute the program and produce a report,
type this command.

lus/nid00008/> pat_hwpc -g 2 yod myprogram

Alternately, you can get the same results by setting an environment variable to
specify the counter group to be recorded, then using pat_hwpc to instrument
and execute the program and generate a report.

lus/nid00008/> setenv PAT_RT_HWPC 2

lus/nid00008/> pat_hwpc -E yod myprogram

You can also use pat_hwpc to monitor individual counters. For example, to
measure Level 1 data cache misses and data prefetch cache misses, type this
command.

lus/nid00008/> pat_hwpc -e PAPI_L1_DCM,PAPI_PRF_DM yod myprogram

2.5.2.3 Output

Upon successful completion of program execution, pat_hwpc saves the
instrumented version of the program under the name program_name+hwpc.
This instrumented program can be rerun at any time using pat_run or yod.
Instrumented programs can not be run using the pat_hwpc command.

By default, the pat_hwpc command generates a report to stdout. If you specify
the -f option on the pat_hwpc command line, pat_hwpc instead creates a
data file named program_name+hwpc+PID.xf, which can be viewed using
pat_report. Unlike pat_run, no command or report files are created.

Experiment data file written:

/lus/nid00008//myprogram+hwpc+194td.xf

Data file 1/1: [....................]

S–2376–41 63

Using Cray® Performance Analysis Tools

The standard pat_hwpc report begins with header information identifying the
program and the conditions under which it was executed.

CrayPat/X: Version 3.2 Revision 409 (xf 305) 09/29/06 07:45:47

Experiment: trace

Experiment data file: /lus/nid00008//swim+hwpc+194td.xf

Original program: /lus/nid00008//swim

Instrumented program: /lus/nid00008//swim+hwpc

Program invocation: swim+hwpc

Number of PEs: 16

Exit Status: 0 PEs: 0-15

Runtime environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.x/cpatx

PAT_RT_EXPERIMENT=trace

PAT_RT_EXPFILE_DIR=/lus/nid00008/

PAT_RT_EXPFILE_REPLACE=1

PAT_RT_EXPFILE_SUBDIR=1

PAT_RT_HWPC=1

PAT_RT_SUMMARY=0

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.x/cpatx

Report command line options: -b exp,pe=HIDE,thread=HIDE

Host name and type: guppy x86_64 2400 MHz

Operating system: catamount 1.0 2.0

64 S–2376–41

Getting Started with CrayPat [2]

Next, it identifies the counters that were monitored and the functions that were
traced. In this example, because a number of CrayPat API library functions were
traced, the source paths are not available.

Hardware performance counter events:

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DC_MISS Data Cache Miss

User_Cycles Virtual Cycles

Traced functions:

MPI_Finalize ==NA==

MPI_Init ==NA==

MPI_Init_thread ==NA==

__pat_api_activated ==NA==

__pat_api_flush_buffer ==NA==

__pat_api_profiling_state ==NA==

__pat_api_record ==NA==

__pat_api_region_begin ==NA==

__pat_api_region_end ==NA==

__pat_api_sampling_state ==NA==

__pat_api_trace_function ==NA==

__pat_api_trace_user ==NA==

__pat_api_trace_user_v ==NA==

__pat_api_tracing_state ==NA==

exit .../computelibs/glibc/stdlib/exit.c

longjmp .../../sysdeps/generic/longjmp.c

main ==NA==

mpi_finalize_ ==NA==

mpi_init_ ==NA==

pat_flush_buffer_ ==NA==

pat_profiling_state_ ==NA==

pat_record_ ==NA==

pat_region_begin_ ==NA==

pat_region_end_ ==NA==

pat_sampling_state_ ==NA==

pat_trace_function_ ==NA==

pat_trace_user_ ==NA==

pat_trace_user_v_ ==NA==

pat_tracing_state_ ==NA==

S–2376–41 65

Using Cray® Performance Analysis Tools

This is followed by a table showing the counter information and related derived
metrics.

Notes for table 1:

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b exp,pe=HIDE,thread=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1:

Experiment=1 / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 1.520196

Imb.Time --

Imb.Time% --

Calls 48032

PAPI_TLB_DM 203.019M/sec 325047356 misses

PAPI_L1_DCA 6865.150M/sec 10991571175 ops

PAPI_FP_OPS 6001.327M/sec 9608530849 ops

DC_MISS 344.900M/sec 552208334 ops

User time 1.601 secs 3842562798.75 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 2.50 ops/cycle

HW FP Ops / User time 6001.327M/sec 9608530849 ops 7.8%peak

HW FP Ops / WCT 6001.327M/sec

Computation intensity 0.87 ops/ref

LD & ST per TLB miss 33.82 ops/miss

LD & ST per D1 miss 19.90 ops/miss

D1 cache hit ratio 95.0%

% TLB misses / cycle 0.5%

==

The report produced by pat_hwpc is not saved in a file unless the -f option is
specified on the pat_hwpc command line.

66 S–2376–41

Getting Started with CrayPat [2]

For more information about using pat_hwpc, see the pat_hwpc(1), hwpc(3),
and papi_counters(5) man pages.

S–2376–41 67

Using Cray® Performance Analysis Tools

68 S–2376–41

Using the CrayPat API [3]

The procedures described in the previous chapter show how to instrument an
entire program for use with CrayPat. There may be times, however, when you
want to focus on a certain region within your code, either to reduce sampling
overhead, reduce the size of the resulting data files, or because only a particular
region or function is of interest. In these cases, the solution is to insert CrayPat
API (application programming interface) calls into the program source, thus
turning data capture on and off at key points during program execution. With the
CrayPat API, it is possible to collect data for specific functions upon entry into
and exit from the functions, or even from one or more regions within the body
of a function.

The general procedure for using CrayPat API calls is as follows:

Procedure 3: Using CrayPat API Calls

1. Load the CrayPat module.

> module load craypat

2. Include the CrayPat API header file in your source code, if required. (Header
files are language-specific and sometimes optional. See Section 3.1, page 70 to
determine whether a header file is required in your case.)

3. Modify your source code to include CrayPat API calls where wanted.

4. Compile your source code.

> ftn -c myprogram.f

> ftn -o myprogram myprogram.o

5. Use the pat_build -u option to build the instrumented executable, thus
creating an entry point for the function of interest.

> pat_build -u myprogram

pat-3803 pat_build: INFO

A trace intercept routine was created for the

function 'my_function_'.

6. Execute the instrumented program.

> yod ./myprogram+pat

CrayPat/X: Version 30 Revision 88 04/18/06 14:51:48

CrayPat/X: Runtime summarization enabled. Set PAT_RT_SUMMARY=0 to disable.

S–2376–41 69

Using Cray® Performance Analysis Tools

Experiment data file(s) written:

/ufs/home//myprogram+pat+84/myprogram+pat+84to.xf

7. Use pat_report or Cray Apprentice2 to examine the resulting data file(s).

The use of the CrayPat API is discussed in more detail in the following sections.

3.1 Header Files

CrayPat API calls are supported in both Fortran and C. After the CrayPat
module is loaded, the include files that define the CrayPat API can be found
in the $PAT_ROOT/include directory and consist of the C header file,
pat_api.h, and the Fortran and FORTRAN 77 header files, pat_apif.h and
pat_apif77.h.

If you are working in C, you must include the pat_api.h header file in your C
source code.

If you are working in Fortran, the header file may be included in the source, or it
may be used for reference purposes only.

Note: The Fortran header file pat_apif.h can be used only with compilers
that accept Fortran 90 constructs such as new-style declarations and interface
blocks. The alternate Fortran header file, pat_apif77.h, is for use with
compilers that do not accept such constructs.

3.2 API Calls

The CrayPat API function calls differ, depending on whether you are working in
Fortran or C.

3.2.1 Fortran Functions

The following functions are available in Fortran.

All sections to be traced must begin with a PAT_region_begin call and end
with a PAT_region_end call. These calls will have no effect in the original
program, but in a program instrumented for tracing cause data to be collected for
the enclosed region of code.

!
Caution: The istat arguments to the following functions are mandatory. If you
do not specify all istat arguments where required, your program will appear to
compile successfully but will fail upon execution.

70 S–2376–41

Using the CrayPat API [3]

PAT_region_begin (id, label, istat)
PAT_region_end (id, istat)

Both calls are required. This pair of calls defines the boundaries
of a region. For each region, a summary of activity, including
time and hardware performance counters (if selected), is
produced. The argument id assigns a numerical value to the
region and must be greater than zero. Each id must be unique
across the entire program.

The argument label assigns a character string to the region,
allowing for easier identification of the region in the report.

The argument istat is an integer variable that will contain a
non-zero value if data is recorded.

Two run-time environment variables affect region processing:
PAT_RT_REGION_SIZE and PAT_RT_REGION_STKSZ. See the
pat(1) man page for more information.

PAT_profiling_state (cmd, istat)
PAT_record (cmd, istat)
PAT_sampling_state (cmd, istat)
PAT_tracing_state (cmd, istat)

Toggles the status of the selected function. The cmd
argument must have one of the following values:
PAT_STATE_ON, PAT_STATE_OFF, or PAT_STATE_QUERY. If
PAT_STATE_QUERY is used, it returns the current value without
changing it. The possible values are:

integer(4),parameter :: PAT_STATE_OFF = 0

integer(4),parameter :: PAT_STATE_ON = 1

integer(4),parameter :: PAT_STATE_QUERY = 2

The istat argument returns an integer variable that will contain
either PAT_STATE_ON or PAT_STATE_OFF after the call.

PAT_trace_user (label, istat)

Issues a TRACE_USER record into the experiment data file if
the expression expr evaluates to true. The record contains the
identifying string label and contains the data from the point of
the call to the next PAT_trace_user or PAT_trace_user_v
call, or to end of the current procedure.

S–2376–41 71

Using Cray® Performance Analysis Tools

The istat argument is an integer variable that will contain a
non-zero value if data is recorded.

PAT_trace_user_v (label, expr, nargs, args, istat)

Issues a TRACE_USER record into the experiment data file if
the expression expr evaluates to true. The record contains the
identifying string label and the data from the point of the call to
the next PAT_trace_user or PAT_trace_user_v call, or to
end of the current procedure.

If expr is zero, data is not recorded from this call.

The nargs argument indicates the number of values to record.
The args argument is an array of integer or real values to record.

The istat argument is an integer variable that contains a non-zero
value if data is recorded.

This function applies to tracing experiments only.

void PAT_trace_user (const char *str)

Issues a TRACE_USER record containing the identifying string str
into the experiment data file.

This function applies to tracing experiments only.

PAT_trace_function (proc, cmd, istat)

This call toggles tracing of a procedure, where proc is the
procedure that is the subject of this call. The procedure must be
instrumented for tracing using pat_build with either the -u
or -T option. The cmd argument sets the tracing state, either
PAT_STATE_ON or PAT_STATE_OFF, and istat is an integer
variable that contains a non-zero value if the procedure can be
enabled or disabled for tracing.

PAT_flush_buffer (nbytes)

Writes all of the recorded contents in the data buffer to the
experiment data file for the calling PE and calling thread. The
number of bytes written to the experiment data file is returned.
After writing the contents, the data buffer is empty and starts to
refill. Refer to pat(1) to control the size of the write buffer.

72 S–2376–41

Using the CrayPat API [3]

3.2.2 C Functions

The following functions are available in C.

All sections to be traced must begin with a PAT_region_begin call and end
with a PAT_region_end call. These calls will have no effect in the original
program, but in a program instrumented for tracing cause data to be collected for
the enclosed region of code.

int PAT_region_begin (int id, const char *label)
int PAT_region_end (int id)

Both calls are required. The pair of calls defines the boundaries
of a region. For each region, a summary of activity, including
time and hardware performance counters (if selected), is
produced. The argument id assigns a numerical value to the
region and must be greater than zero. Each id must be unique
across the entire program.

The argument label assigns a character string to the region,
allowing for easier identification of the region in the report.

Two run-time environment variables affect region processing:
PAT_RT_REGION_SIZE and PAT_RT_REGION_STKSZ. See the
pat(1) man page for more information.

int PAT_profiling_state (int state)
int PAT_record (int state)
int PAT_sampling_state (int state)
int PAT_tracing_state (int state)

Changes the state of profiling, sampling, or tracing to state. The
state argument can have one of the following values:

PAT_STATE_ON

Activates the state.

PAT_STATE_OFF

Deactivates the state.

PAT_STATE_QUERY

Returns the current value of state without
changing it.

All other values have no effect on the state.

S–2376–41 73

Using Cray® Performance Analysis Tools

int PAT_trace_user_l (const char *str, int expr, ...)

Issues a TRACE_USER record into the experiment data file if
the expression expr evaluates to true. The record contains the
identifying string str and the ... arguments, if specified, in
addition to other information, including a timestamp.

Returns the value of expr.

This function applies to tracing experiments only.

int PAT_trace_user_v (const char *str, int expr, int nargs, long *args, ...)

Issues a TRACE_USER record into the experiment data file if
the expression expr evaluates to true. The record contains the
identifying string str and the ... arguments, if specified, in
addition to other information, including a timestamp.

The nargs argument indicates the number of 64–bit arguments
that args points to. These arguments are included in the
TRACE_USER record.

Returns the value of expr.

This function applies to tracing experiments only.

void PAT_trace_user (const char *str)

Issues a TRACE_USER record containing the identifying string str
into the experiment data file.

This function applies to tracing experiments only.

int PAT_trace_function (const void *addr, int state)

Activates or deactivates the tracing of the instrumented
function indicated by the function entry address addr. The
argument state supports the same values as described under
int PAT_tracing_state. Returns nonzero if the function at
the entry address was activated or deactivated; otherwise, zero
is returned.

This function applies to tracing experiments only.

74 S–2376–41

Using the CrayPat API [3]

int PAT_flush_buffer (void)

Writes all of the recorded contents in the data buffer to the
experiment data file for the calling PE and calling thread. The
number of bytes written to the experiment data file is returned.
After writing the contents, the data buffer is empty and starts to
refill. See pat(1) to control the size of the write buffer.

3.3 Examples

The following examples illustrate how to use the CrayPat API in Fortran and
C programs.

3.3.1 Fortran

This example uses the PAT_region_begin and PAT_region_end functions to
instrument a single loop and then provides an example of the resulting report.

S–2376–41 75

Using Cray® Performance Analysis Tools

Example 1: API calls in a Fortran program

1. Begin by adding the API calls to your source code.

! Use the Fortran API to instrument a single loop

program test_api

interface

real function my_sum (n, x)

integer i, n

real :: x(n)

end function my_sum

end interface

real :: x(100)

x = 0.0

do i=1,100

x(i) = i

print *, "inside do loop i=", i

print *,"sum = ", my_sum(100, x)

end do

end

real function my_sum (n, x)

integer i, n

real :: x(n)

my_sum = 0

print *, "Entering my_sum"

call PAT_region_begin (1, "loop", istat);

do i=1,n

my_sum = my_sum + x(i)

print *, "i = ", i, "my_sum = ", my_sum

end do

call PAT_region_end (1, istat);

print *, "Exiting my_sum"

end function my_sum

In this example, the loop inside the function my_sum is defined as PAT region
#1 loop.

2. Load the CrayPat module.

> module load craypat

76 S–2376–41

Using the CrayPat API [3]

3. Compile the program.

> ftn -c f_api.f90

> ftn -o f_api f_api.o

4. Instrument the program, using the pat_build -u option to create the
required intercept routines.

> pat_build -u f_api

pat-3803 pat_build: INFO

A trace intercept routine was created for the

function 'my_sum'.

5. Execute the program.

> yod ./f_api+pat

CrayPat/X: Version 3.1 Revision 363 08/28/06 16:25:58

CrayPat/X: Runtime summarization enabled. Set PAT_RT_SUMMARY=0 to disable.

Experiment data file(s) written:

/ufs/home//f_api+pat+1568to.xf

6. Use pat_report to view the resulting data file.

> pat_report f_api+pat+1568to.xf

Data file 1/1: [....................]

7. The resulting report is displayed.

CrayPat/X: Version 3.1 Revision 363 (xf 305) 08/28/06 16:25:58

Experiment: trace

Experiment data file:

/ufs/home//f_api+pat+1568to.xf (RTS)

Original program: /ufs/home//f_api

Instrumented program: /ufs/home//./f_api+pat

Program invocation: ./f_api+pat

Number of PEs: 1

Exit Status: 0 PEs: 0

S–2376–41 77

Using Cray® Performance Analysis Tools

Runtime environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1/cpatx

Report time environment variables:

PAT_ROOT=opt/xt-tools/craypat/3.1.x/cpatx

Report command line options: <none>

Host name and type: perch x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Traced functions:

__pat_api_activated ==NA==

__pat_api_flush_buffer ==NA==

__pat_api_profiling_state ==NA==

__pat_api_record ==NA==

__pat_api_region_begin ==NA==

__pat_api_region_end ==NA==

__pat_api_sampling_state ==NA==

__pat_api_trace_function ==NA==

__pat_api_trace_user ==NA==

__pat_api_trace_user_v ==NA==

__pat_api_tracing_state ==NA==

exit .../computelibs/glibc/stdlib/exit.c

longjmp .../../sysdeps/generic/longjmp.c

main ==NA==

pat_flush_buffer_ ==NA==

pat_profiling_state_ ==NA==

pat_record_ ==NA==

pat_region_begin_ ==NA==

pat_region_end_ ==NA==

pat_sampling_state_ ==NA==

pat_trace_function_ ==NA==

pat_trace_user_ ==NA==

pat_trace_user_v_ ==NA==

pat_tracing_state_ ==NA==

Notes for table 1:

High level option: -O profile

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr \

-b exp,gr,fu

78 S–2376–41

Using the CrayPat API [3]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Time % | Time | Calls |Experiment=1

| | |Group=USER

| | |Function

100.0% | 30.905731 | 102 |Total

|--

| 96.2% | 29.719449 | 100 |#1.loop

| 3.8% | 1.186282 | 1 |main

|==

Notes for table 2:

High level option: -O heap_program

Low level options: -d IU,IF,NF,FM -b exp

Table 2: Heap Usage at Start and End of Main Program

MB Heap | MB Heap | Heap | Max Free |Experiment=1

Used at | Free at | Not |Object at |

Start | Start | Freed | End |

| | MB | |

20.143 | 1905.857 | 0.022 | 1905.835 |Total

|===

Notes for table 3:

High level option: -O program_time

Low level options: -d pt -b exp

S–2376–41 79

Using Cray® Performance Analysis Tools

Table 3: Program Wall Clock Time

Process |Experiment=1

Time |

30.926624 |Total

|=======================

3.3.2 C

This example uses the PAT_region_begin and PAT_region_end functions
to instrument a single loop and then uses pat_run to execute the program and
generate the resulting report.

Example 2: API calls in a C program

1. Begin by adding the pat_api.h header file and API calls to your source
code.

#include <stdio.h>

#include <pat_api.h>

double my_sum(int n, double *x) {

int i;

double y = 0;

printf("Entering my_sum\n");

PAT_region_begin (1, "loop");

for (i=0; i<n; i++) {

y += x[i];

}

PAT_region_end (1);

printf("Exiting my_sum\n");

return y;

}

int main() {

int i;

double x[100];

for (i=0; i<100; i++) x[i] = i;

printf("sum = %g\n", my_sum(100, x));

}

80 S–2376–41

Using the CrayPat API [3]

2. Load the CrayPat module.

> module load craypat

3. Compile the program.

> cc -c c_api.c

> cc -o c_api c_api.o

4. Instrument the program.

> pat_build -u c_api

INFO: A trace intercept routine was created for the

function 'my_sum'.

5. Use the pat_run command to specify reporting options, execute the
program, and generate the report. In this example, the -b calltree option
specifies the calltree view.

> pat_run -b calltree yod ./c_api+pat

** Verified that ./c_api+pat is instrumented.

PAT_REPORT_OPTIONS=-Ocalltree -bcalltree

PAT_ROOT=/opt/xt-tools/craypat/3.1.x/cpatx

PAT_RT_EXPERIMENT=trace

PAT_RT_EXPFILE_DIR=pat_run.04

PAT_RT_EXPFILE_SUBDIR=0

yod ./c_api+pat

CrayPat/X: Version 3.2 Revision 409 09/29/06 07:44:00

Entering my_sum

Exiting my_sum

sum = 4950

Experiment data file written:

pat_run.04/c_api+pat+200t.xf

pat_report -o pat_run.04/report pat_run.04

Data file 1/1: [....................]

Created report file: pat_run.04/report

6. Use pat_report to view the resulting data file. In this example, we give
pat_report the name of a directory than of an individual data file.

> pat_report pat_run.04

Data file 1/1: [....................]

CrayPat/X: Version 3.2 Revision 409 (xf 305) 09/29/06 07:44:00

Experiment: trace

S–2376–41 81

Using Cray® Performance Analysis Tools

Experiment data file: pat_run.04/c_api+pat+200t.xf (RTS)

Current path to data file:

/ufs/home//pat_run.04/c_api+pat+200t.xf (RTS)

Original program: /ufs/home//c_api

Instrumented program: /ufs/home//./c_api+pat

Program invocation: ./c_api+pat

Number of PEs: 1

Exit Status: 0 PEs: 0

Runtime environment variables: <none>

Report time environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.x/cpatx

Report command line options: <none>

Host name and type: perch x86_64 2400 MHz

Operating system: catamount 1.0 2.0

Traced functions:

PAT_flush_buffer ==NA==

PAT_heap_stats ==NA==

PAT_profiling_state ==NA==

PAT_record ==NA==

PAT_region_begin ==NA==

PAT_region_end ==NA==

PAT_sampling_state ==NA==

PAT_trace_function ==NA==

PAT_trace_user ==NA==

PAT_trace_user_l ==NA==

PAT_trace_user_v ==NA==

PAT_tracing_state ==NA==

__pat_api_activated ==NA==

__pat_api_flush_buffer ==NA==

__pat_api_heap_stats ==NA==

82 S–2376–41

Using the CrayPat API [3]

__pat_api_profiling_state ==NA==

__pat_api_record ==NA==

__pat_api_region_begin ==NA==

__pat_api_region_end ==NA==

__pat_api_sampling_state ==NA==

__pat_api_trace_function ==NA==

__pat_api_trace_user ==NA==

__pat_api_trace_user_v ==NA==

__pat_api_tracing_state ==NA==

exit .../computelibs/glibc/stdlib/exit.c

longjmp .../../sysdeps/generic/longjmp.c

main ...//c_api.c

my_sum .../smiht/c_api.c

Notes for table 1:

High level option: -O calltree

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b exp,ct

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Function Calltree View

S–2376–41 83

Using Cray® Performance Analysis Tools

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Calltree

100.0% | 100.0% | 0.008105 | 4 |Total

|--

| 100.0% | 100.0% | 0.008105 | 3 |main

||---

|| 62.9% | 62.9% | 0.005102 | 2 |my_sum

|||--

||| 99.9% | 99.9% | 0.005099 | 1 |my_sum(exclusive)

||| 0.1% | 100.0% | 0.000003 | 1 |#1.loop

|||==

|| 37.1% | 100.0% | 0.003003 | 1 |main(exclusive)

|==

Notes for table 2:

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b calltree

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 2:

Time % | Cum. | Time | Calls |Calltree

| Time % | | |

100.0% | 100.0% | 0.008105 | 4 |Total

|--

| 100.0% | 100.0% | 0.008105 | 3 |main

||---

|| 62.9% | 62.9% | 0.005102 | 2 |my_sum

|||--

||| 99.9% | 99.9% | 0.005099 | 1 |my_sum(exclusive)

||| 0.1% | 100.0% | 0.000003 | 1 |#1.loop

|||==

|| 37.1% | 100.0% | 0.003003 | 1 |main(exclusive)

|==

84 S–2376–41

Using the CrayPat hwpc Library [4]

The procedures described in the previous chapters show how to instrument your
code to trace the use and behavior of software functions and calls. This chapter
discusses using the CrayPat hardware performance counter (hwpc) library to
collect performance data based on hardware counters in Fortran, C, and C++
applications.

The CrayPat hwpc library supports performance instrumentation of multiple
code regions, which may be nested, and which may be executed multiple times.
When instrumented regions are nested, exclusive as well as inclusive times are
reported for the outer regions. When an instrumented region is executed multiple
times, averages and standard deviations are also reported.

The general procedure for using the CrayPat hwpc library is as follows:

Procedure 4: Using CrayPat hwpc Calls

1. Load the CrayPat module.

lus/nid00008/> module load craypat

2. If you are working with MPI or SHMEM code, verify that you are either
working in a directory on a Lustre mount point or that you have redirected
CrayPat output to a target directory which is mounted on a Lustre file
system.

3. Include the CrayPat hwpc header file in your source code. Header files are
language-specific and discussed in more detail in Section 4.1, page 86.

4. Modify your source code to include CrayPat hwpc calls where wanted.

5. Compile and link your source code.

/lus/nid00008/> ftn -o myprogram myprogram.f -lhwpc -lpapi -lm

Note: You do not need to compile and link in separate steps, as you do not
use pat_build to create the instrumented executable.

You do need to use the -l option to link in the hwpc, papi (Performance
API), and m (math) libraries when compiling.

6. Select the hardware counter events to monitor. By default, the events in
hardware counter group 1 (floating-point operations, L1 data cache accesses,
L1 data cache misses, and TLB misses) are recorded.

S–2376–41 85

Using Cray® Performance Analysis Tools

For more information about selecting hardware counters, see Section 4.4,
page 90.

7. Execute the instrumented program.

/lus/nid00008/> yod ./myprogram

CrayPat generates an event profile which is written to a data file. By default,
the data file has the name application_name+hwpc_prof_.PID, unless the
environment variable PAT_HWPC_OUTPUT_NAME is set, in which case the file
name is PAT_HWPC_OUTPUT_NAME_.hwpc.

8. Use pat_report or Cray Apprentice2 to examine the resulting data files.

The use of the CrayPat hwpc library is discussed in more detail in the following
sections.

4.1 Header Files

CrayPat hwpc calls are supported in Fortran, C, and C++. After the CrayPat
module is loaded, the include files that define the CrayPat hwpc calls are found
in the $PAT_ROOT/include directory and consist of the C and C++ header file,
hwpc.h, and the Fortran header file, hwpcf.h.

If you are working in C or C++, you must include the hwpc.h header file in your
source code.

If you are working in Fortran, you must include the hwpcf.h header file in your
source code.

4.2 hwpc Calls

The CrayPat hwpc calls are macros that expand into functions for C or C++ code
or subroutines for Fortran code. Regardless of language, the use of the macros
is the same.

PAT_hwpc_init (taskID, application_name)

This call initializes the hwpc library. The taskID must be an
integer value specifying the MPI process rank or other equivalent
enumeration of the processes assigned to the program. The
application_name is a string that identifies the program.

86 S–2376–41

Using the CrayPat hwpc Library [4]

This call must come before any PAT_hwpc_begin calls in your
code.

Note: The MPI node number (MPI_Comm_rank) must be
initialized before you call PAT_hwpc_init. If the PE number
is not initialized, the program will report data for MPI node
0 only.

PAT_hwpc_begin (id, label)

This call marks the beginning of a region for which performance
data is collected. You can have multiple regions within a
program. The id is the instrumentation section number; this
number must be an integer value greater than zero and you must
use a different value for each region. The label is a string used to
identify this region in the report.

By default, the value of id must be greater than 0 and less
than 100. The maximum value can be increased by setting the
environment variable PAT_HWPC_INST_SECTIONS to a larger
value.

PAT_hwpc_end (id)

This call marks the end of a data collection region. Each
PAT_hwpc_begin call must have a corresponding
PAT_hwpc_end call with the same id value.

Data collection regions cannot overlap. However, regions can
be nested.

PAT_hwpc_finalize ()

This call is used after the last PAT_hwpc_end call to terminate
data collection.

4.3 Examples

The following examples show how to use the CrayPat hwpc library in Fortran
and C programs.

S–2376–41 87

Using Cray® Performance Analysis Tools

4.3.1 Fortran

This example illustrates using the PAT_hwpc_begin and PAT_hwpc_end
functions to instrument a function nested inside a loop and using the
PAT_HWPC_EVENT_SET environment variable to track L1 and L2 data cache
usage.

Example 3: hwpc Calls in a Fortran program

1. Begin by adding the hwpcf header file and calls to your source code.

#include <hwpcf.h>

MPI_Comm_rank (MPI_COMM_WORLD, &me);

call PAT_hwpc_init(me, "my program")

call PAT_hwpc_begin(10, "Loop")

do ...

call do_work()

call PAT_hwpc_begin(20, "more work")

call do_more_work()

call PAT_hwpc_end(20)

end do

call PAT_hwpc_end(10)

call PAT_hwpc_finalize()

2. Load the CrayPat module.

> module load craypat

3. Compile and link the program.

> ftn -o my_prog my_prog.f -lhwpc -lpapi -lm

4. Select the hardware counter group to examine.

> setenv PAT_HWPC_EVENT_SET 2

5. Execute the program.

> yod ./my_prog

6. Use pat_report to view the resulting data file.

> pat_report my_prog+hwpc_prof.84

88 S–2376–41

Using the CrayPat hwpc Library [4]

4.3.2 C or C++

This example illustrates using the PAT_hwpc_begin and PAT_hwpc_end
functions to instrument a function nested inside a loop.

Example 4: hwpc calls in a C program

1. Begin by adding the hwpc header file and calls to your source code.

#include <hwpc.h>

MPI_Comm_rank (MPI_COMM_WORLD, &me)

PAT_hwpc_init(me, "application");

PAT_hwpc_begin(10, "all work");

do_work();

PAT_hwpc_begin(20, "more work");

do_more_work();

PAT_hwpc_end(20);

PAT_hwpc_end(10);

PAT_hwpc_finalize();

2. Load the CrayPat module.

> module load craypat

3. Compile and link the program.

> cc -o myprog myprog.c -lhwpc -lpapi -lm

4. Select the hardware counter group to record, if needed.

5. Execute the program.

> yod ./myprog

6. Use pat_report to view the resulting data file.

> pat_report myprog+hwpc_prof.86

S–2376–41 89

Using Cray® Performance Analysis Tools

4.4 Selecting Hardware Counters to Record

By default, hwpc library calls track the following hardware counter events.

Counters Description

PAPI_FP_OPS Floating point operations

PAPI_L1_DCA Level 1 data cache accesses

DC_MISS Total Level 1 data cache misses

PAPI_TLB_DM Data translation lookaside buffer misses

Alternately, you can set the PAT_HWPC_EVENT_SET environment variable to
a value from 1 through 9, to specify one of the pre-defined hardware counter
groups listed in Table 17, page 149.

As a third alternative, you can create a text file named PAT_HWPC_Events and
use it to define an event set. If this file exists in the current working directory at
the time that the instrumented program is executed, its contents determine the
event set that is recorded. The PAT_HWPC_Events file takes precedence over the
PAT_HWPC_EVENT_SET environment variable.

Each line of the PAT_HWPC_Events file must contain a valid event name
terminated with a pound sign (#) and followed by a description, also terminated
with #. Table 18, page 151 contains a short list of the more commonly
used valid hardware counter names. The complete list is provided in the
papi_counters(5) man page.

The PAT_HWPC_Events file can contain a maximum of four events. Here is an
example of a typical PAT_HWPC_Events file.

PAPI_TOT_INS# Instructions completed#

PAPI_FAD_INS# FP Add instructions#

PAPI_FML_INS# FP Mult instructions#

PAPI_L1_DCA# L1 Data accesses#

90 S–2376–41

Recommended Experiments [5]

This chapter describes a variety of CrayPat experiments and reports that
developers working on Cray XT series systems have found to be useful. Adapt
and modify these experiments and reports as required to suit your specific needs.

This chapter assumes that you are already familiar with the contents of Chapter
1, Chapter 2, and Chapter 3.

5.1 Hardware Counters

The experiments and reports in this section focus on the information that is
captured in the system's hardware counters. All of the experiments in this section
are performed by using the pat_hwpc command to instrument and execute your
compiled program.

• Do load the craypat module before compiling and linking programs for
use with these experiments.

• Do run these experiments from a directory that is mounted on a file system
that supports record-locking. Because of the need to create temporary data
files in the execution directory during the program run, redirecting the final
CrayPat output to a Lustre file system is not sufficient.

• Do not use the pat_build command to instrument the resulting executable
before performing these experiments.

5.1.1 Time, FLOPS, and MIPS

This experiment produces a good basic snapshot of overall program
performance. The data it returns includes the total execution time, total
instruction count, floating point instruction count, and overall FLOPs and MIPS
rates, which when taken together begin to answer the fundamental questions:
"How long does my program take to run and how fast is it running?"

pat_build options None required. pat_build is not
used.

Environment variable settings None required.

Execution command line pat_hwpc yod program_name

S–2376–41 91

Using Cray® Performance Analysis Tools

Program file(s) created program_name+hwpc

Data file(s) created None, unless -f option is specified on
the command line.

pat_report options None required. pat_report is not
used.

On initialization, the following environment variables are set by default:

Runtime environment variables:

PAT_ROOT=/opt/xt-tools/craypat/3.1.x/cpatx

PAT_RT_EXPERIMENT=trace

PAT_RT_EXPFILE_DIR=/lus/mount_point/yourname/path/program_name

PAT_RT_EXPFILE_REPLACE=1

PAT_RT_HWPC=normal

PAT_RT_SUMMARY=1

On completion of execution, a text report is generated to stdout, unless the -f
option has been used to redirect the output to a file. This report lists the general
conditions of program execution, the runtime environment variables that were
set prior to execution, and the functions that were traced.

The highlights of this report are the basic performance numbers, which return
the following values:

Hardware performance counter events:

PAPI_STL_ICY Cycles with no instruction issue

PAPI_TOT_INS Instructions completed

PAPI_FP_INS Floating point instructions

PAPI_TOT_CYC Total cycles

User_Cycles Virtual Cycles

92 S–2376–41

Recommended Experiments [5]

These values are found in Table 1:

Notes for table 1:

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b exp,pe=HIDE,thread=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1:

Experiment=1 / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 1.305623

Imb.Time --

Imb.Time% --

Calls 48016

PAPI_STL_ICY 0.048 secs 115230979.125 cycles

PAPI_TOT_INS 16636.534M/sec 21720594122 instr

PAPI_FP_INS 7359.415M/sec 9608423701 instr

PAPI_TOT_CYC 1.273 secs 3055647618.6875 cycles

User time 1.306 secs 3133430687 cycles

Utilization rate 100.0%

Instr per cycle 6.93 inst/cycle

HW FP Ops / Cycles 3.07 ops/cycle

HW FP Ops / User time 7359.415M/sec 9608423701 ops 9.6%peak

HW FP Ops / WCT 7359.262M/sec

Time Decoder empty 0.048 secs 115230979.125 cycles 3.7%

MIPS 16636.534M/sec

==

S–2376–41 93

Using Cray® Performance Analysis Tools

5.1.1.1 For More Information

During execution, pat_hwpc creates the instrumented program
program_name+hwpc. (It also creates and then automatically deletes a report data
file directory and associated data files.) Once program_name+hwpc has been
created, it can be run independently of pat_hwpc by using the yod command.
For example:

lus/nid00007/> yod -size 16 myprogram+hwpc

This feature also permits you to set runtime environment variables and rerun
the instrumented program, thus using the same instrumented program to
examine other features of program performance. For example, to examine certain
aspects of cache usage, you could set the PAT_RT_HWPC environment variable to
record hardware counter group 8 (instructions completed, L1 cache misses, and
branches taken and mispredicted) and then rerun the instrumented program.

lus/nid00007/> setenv PAT_RT_HWPC 8

lus/nid00007/> yod -size 16 myprogram+hwpc

When run in this manner, the instrumented program creates and saves the report
data file directory and associated data files, and these data files can be examined
later using the pat_report command.

5.1.2 Cache Usage

Memory access is one of the more readily addressable causes of performance
bottlenecks. If data or instructions aren't in cache when the processor needs
them, everything else stops while the system goes off and fetches the required
information.

94 S–2376–41

Recommended Experiments [5]

These experiments will help you determine how well your program is using the
Level 1 and Level 2 data and instruction caches. Then, if you find that your code
produces an excessively high number of cache misses or branch mispredictions,
you can generally address these issues by changing compiler parameters, as
described in your compiler user's guide.

pat_build options None required. pat_build is not
used.

Environment variable settings None required.

Execution command line pat_hwpc -g hwc_group yod
program_name

Program file(s) created program_name+hwpc

Data file(s) created None, unless -f option is specified on
the command line.

pat_report options None required. pat_report is not
used.

The -g hwc_group option is used to specify one of the hardware counter
groups described in Appendix A, page 149. The counter groups that are germane
to cache usage are:

hwc_group Counters Description

1 PAPI_FP_OPS Floating point operations

PAPI_L1_DCA Level 1 data cache accesses

DC_MISS Total level 1 data cache
misses

PAPI_TLB_DM Data translation lookaside
buffer misses

2 PAPI_L1_DCA Level 1 data cache accesses

DC_L2_REFILL_MOESI Total refills from Level 2

DC_SYS_REFILL_MOESI Total refills from system (L2
misses)

BU_L2_REQ_DC Level 2 data cache accesses

3 PAPI_L1_DCA L1 data cache accesses

S–2376–41 95

Using Cray® Performance Analysis Tools

hwc_group Counters Description

PAPI_L1_DCM L1 data cache misses

DC_L2_REFILL_MOES Data cache refills from L2

DC_COPYBACK_MOESI Total copyback

8 PAPI_TOT_INS Instructions completed

IC_MISS L1 instruction cache misses

PAPI_BR_TKN Branches taken

PAPI_BR_MSP Branches mispredicted

9 PAPI_L1_ICA L1 instruction cache accesses

IC_MISS L1 instruction cache misses

PAPI_L2_ICM L2 instruction cache accesses

IC_L2_REFILL Instruction cache refills from
L2

On completion of execution, a text report is generated to stdout, unless the -f
option has been used to redirect the output to a file. This report lists the general
conditions of program execution, the runtime environment variables that were
set prior to execution, and the functions that were traced.

The highlights of this report are the basic cache usage numbers. For this example
we used counter group 3, which returns the following values:

Hardware performance counter events:

PAPI_L1_DCM Level 1 data cache misses

PAPI_L1_DCA Level 1 data cache accesses

DC_L2_REFILL_MOES Refill from L2. Cache bits: Modified Owner Exclusive Shared

DC_COPYBACK_MOES Copyback. Cache bits: Modified Owner Exclusive Shared

User_Cycles Virtual Cycles

96 S–2376–41

Recommended Experiments [5]

These values are found in Table 1:

Notes for table 1:

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b exp,pe=HIDE,thread=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1:

Experiment=1 / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 1.321580

Imb.Time --

Imb.Time% --

Calls 48016

PAPI_L1_DCM 418.133M/sec 552585260 misses

PAPI_L1_DCA 6967.164M/sec 9207483848 ops

DC_L2_REFILL_MOES 336.305M/sec 444445607 ops

DC_COPYBACK_MOES 482.008M/sec 636999309 ops

User time 1.322 secs 3171729565.9375 cycles

Utilization rate 100.0%

LD & ST per D1 miss 16.66 ops/miss

D1 cache hit ratio 94.0%

Memory to D1 refill 81.828M/sec 108139653 lines

Memory to D1 bandwidth 4994.363MB/sec 6920937792 bytes

L2 to Dcache bandwidth 20526.446MB/sec 28444518848 bytes

Dcache to L2 bandwidth 29419.420MB/sec 40767955776 bytes

==

S–2376–41 97

Using Cray® Performance Analysis Tools

5.1.3 Floating Point Operations and Stalls

These experiments are similar to the cache usage experiments. They are included
here primarily to illustrate an alternate way of collecting hardware performance
counter information, by setting runtime environment variables.

These experiments will help you determine how much time your program is
spending in actual processing.

pat_build options None required. pat_build is not
used.

Environment variable settings PAT_RT_HWPC hwc_group

Execution command line pat_hwpc -E yod program_name

Program file(s) created program_name+hwpc

Data file(s) created None, unless -f option is specified on
the command line.

pat_report options None required. pat_report is not
used.

The runtime environment variable PAT_RT_HWPC is used to specify one of the
hardware counter groups described in Appendix B. The -E options instructs
pat_hwpc to use the contents of PAT_RT_HWPC.

The counter groups that cover floating point operations and stalls are:

hwc_group Counters Description

4 PAPI_FP_OPS Floating point
operations

PAPI_FAD_INS Floating point add
instructions

PAP_FML_INS Floating point multiple
instructions

FP_FAST_FLAGS Floating point
operations that use
the fast flag interface

6 PAPI_RES_STL Cycles stalled on any
resource

98 S–2376–41

Recommended Experiments [5]

hwc_group Counters Description

PAPI_FPU_IDL Cycles floating point
units are idle

PAPI_STL_ICY Cycles with no
instruction isse

IC_FETCH_STALL Instruction fetch stall

7 FR_DISPATCH_STALLS Cycles stalled on any
resource

FR_DISPATCH_STALLS_FULL_FP Stalls when FPU is full

FR_DISPATCH_STALLS_FULL_LS Stalls when LS is full

FR_DECODER_EMPTY Cycles with no
instruction issue

On completion of execution, a text report is generated to stdout, unless the -f
option has been used to redirect the output to a file. This report lists the general
conditions of program execution, the runtime environment variables that were
set prior to execution, and the functions that were traced.

The highlights of these reports are the basic performance numbers. For this
example we used counter group 6, which returns the following values:

Hardware performance counter events:

PAPI_FPU_IDL Cycles floating point units are idle

PAPI_STL_ICY Cycles with no instruction issue

PAPI_RES_STL Cycles stalled on any resource

IC_FETCH_STALL Instruction fetch stall

User_Cycles Virtual Cycles

S–2376–41 99

Using Cray® Performance Analysis Tools

These values are found in Table 1:

Notes for table 1:

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b exp,pe=HIDE,thread=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1:

Experiment=1 / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 1.317641

Imb.Time --

Imb.Time% --

Calls 48016

PAPI_FPU_IDL 0.251 secs 601329314.5 cycles

PAPI_STL_ICY 0.050 secs 119636988.4375 cycles

PAPI_RES_STL 0.970 secs 2328911884 cycles

IC_FETCH_STALL 1.077 secs 2584784225.375 cycles

User time 1.318 secs 3162273298.375 cycles

Utilization rate 100.0%

Total time stalled 0.970 secs 2328911884 cycles 73.6%

Time I Fetch Stalled 1.077 secs 2584784225.375 cycles 81.7%

Avg Time FPUs idle 0.125 secs 300664657.25 cycles 9.5%

Time Decoder empty 0.050 secs 119636988.4375 cycles 3.8%

==

100 S–2376–41

Recommended Experiments [5]

5.1.4 Compiler Vectorization

One of the most effective ways to improve performance on Cray XT series
systems is by taking advantage of the AMD x86_64 vector instruction set. This
experiment provides a high-level view of Streaming SIMD Extension (SSE) usage,
which in turn indicates how well the compiler is vectorizing your code.

pat_build options None required. pat_build is not
used.

Environment variable settings PAT_RT_HWPC 5

Execution command line pat_hwpc -E yod program_name

Program file(s) created program_name+hwpc

Data file(s) created None, unless -f option is specified on
the command line.

pat_report options None required. pat_report is not
used.

The runtime environment variable PAT_RT_HWPC is used to specify hardware
counter group 5. The -E options instructs pat_hwpc to use the PAT_RT_HWPC
during execution.

On completion of execution, a text report is generated to stdout, unless the -f
option has been used to redirect the output to a file. This report lists the general
conditions of program execution, the runtime environment variables that were
set prior to execution, and the functions that were traced.

The highlights of this report are the SSE and SSE2 usage numbers:

Hardware performance counter events:

FR_FPU_X87 Retired FPU instructions - x87 instructions

FR_FPU_MMX_3D Retired FPU instructions - Combined MMX and 3DNow! instructions

FR_FPU_SSE_SSE2_PACKED Retired FPU instructions - Combined packed SSE and SSE2 instructions

FR_FPU_SSE_SSE2_SCALAR Retired FPU instructions - Combined scalar SSE and SSE2 instructions

User_Cycles Virtual Cycles

S–2376–41 101

Using Cray® Performance Analysis Tools

These counters and associated derived values are presented in Table 1:

Notes for table 1:

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr,P \

-b exp,pe=HIDE,thread=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1:

Experiment=1 / PE='HIDE' / Thread=0='HIDE'

==

Totals for program

--

Time% 100.0%

Time 1.298718

Imb.Time --

Imb.Time% --

Calls 48016

FR_FPU_X87 147 /sec 192 instr

FR_FPU_MMX_3D 0 instr

FR_FPU_SSE_SSE2_PACKED 1.822M/sec 2366416 instr

FR_FPU_SSE_SSE2_SCALAR 11439.760M/sec 14856713022 instr

User time 1.299 secs 3116858388.9375 cycles

Utilization rate 100.0%

==

5.2 Program Profiles

The experiments and reports in this section use the pat_run command to
execute your program and collect commonly sought information.

• Do load the craypat module before compiling and linking programs for
use with these experiments.

102 S–2376–41

Recommended Experiments [5]

• Do use the pat_build command to instrument your executable program
and trace all entry points, as shown in this example:

> pat_build -u myprogram

By default, this produces the instrumented executable myprogram+pat, which
is used in all of the following examples.

Note: The pat_hwpc command cannot be used to execute any
instrumented programs that have been created using pat_build.
However, pat_run may be used to execute instrumented programs that
have been created using pat_hwpc.

5.2.1 Basic Profile

The Profile report answers the question, "How much time is my program
spending in which functions?" To generate a Profile report, execute the
instrumented program using this command:

> pat_run -O profile yod yod_options program_name+pat

On completion of execution, pat_run creates a directory containing the
data files generated by the program execution. This directory is named
pat_run.sequence_number, where sequence_number is incremented each time that
pat_run is invoked. Along with the report data file in .xf format, this directory
also contains a flat text file named command, which records the command line
used to generate the data, and another text file named report, which contains
the full report.

To look at the report, either cat the report file or use pat_report as shown in
the following example:

> pat_report pat_run.sequence_number

S–2376–41 103

Using Cray® Performance Analysis Tools

The Profile report lists the conditions of program execution, the functions that
were traced, and the associated source file locations (if available). The core of
the report is Table 1, which lists the amount of time and number of calls to each
function.

Notes for table 1:

High level option: -O profile

Low level options: -d ti%@0.05,ti,imb_ti,imb_ti%,tr \

-b exp,gr,fu,pe=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE='HIDE'

100.0% | 3.159527 | -- | -- | 172832 |Total

|--

| 100.0% | 3.159521 | -- | -- | 172800 |USER

||---

|| 30.8% | 0.972265 | 0.050900 | 5.3% | 19200 |#21.Do 200

|| 25.4% | 0.801611 | 0.039882 | 5.1% | 19168 |#31.Do 300

|| 22.7% | 0.717535 | 0.045752 | 6.4% | 19200 |#11.Do 100

|| 7.6% | 0.240875 | 0.472469 | 70.6% | 19200 |calc2_

|| 6.8% | 0.215497 | 0.637263 | 79.7% | 19168 |calc3_

|| 5.9% | 0.185874 | 0.395246 | 72.5% | 19200 |calc1_

|| 0.4% | 0.011822 | 0.057233 | 88.4% | 16 |MAIN_

|| 0.1% | 0.004450 | 0.000953 | 18.8% | 19200 |#10.Calc1

|| 0.1% | 0.003708 | 0.000269 | 7.2% | 19168 |#30.Calc3

|| 0.1% | 0.002725 | 0.003807 | 62.2% | 16 |inital_

|| 0.1% | 0.002508 | 0.001107 | 32.7% | 19200 |#20.Calc2

|==

104 S–2376–41

Recommended Experiments [5]

5.2.2 Callers Profile

The Callers report looks at the functions listed in the Profile report in a bit more
depth, and answers the question, "Which parts of my program are calling those
functions?" To generate a Callers report, execute the instrumented program using
this command:

> pat_run -O callers yod yod_options program_name+pat

Note: The callers argument can be abbreviated to ca. Alternately, the
argument can be replaced with ca+src, to include source file information
as shown in Section 5.2.3, page 107.

On completion of execution, pat_run produces the same output directory and
files as described in Section 5.2.1, page 103.

To look at the Callers report, either cat the report file or use pat_report as
shown in the following example:

> pat_report pat_run.sequence_number

The Callers report lists the conditions of program execution, the functions that
were traced, and their associated source file locations (if available). The core of
the report is Table 1, which lists the amount of time and number of calls to each
function, along with the bottom-up view of the call tree.

S–2376–41 105

Using Cray® Performance Analysis Tools

Notes for table 1:

High level option: -O callers

Low level options: -d ti%@0.05,cum_ti%,ti,tr \

-b exp,gr,fu,ca,pe=HIDE

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Profile by Function and Callers

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Group

| | | | Function

| | | | Caller

| | | | PE='HIDE'

100.0% | 100.0% | 3.250648 | 172832 |Total

|---

| 100.0% | 100.0% | 3.250642 | 172800 |USER

||--

|| 29.9% | 29.9% | 0.972206 | 19200 |#21.Do 200

|| | | | | calc2_

|| | | | | MAIN_

|| 24.7% | 54.6% | 0.801592 | 19168 |#31.Do 300

|| | | | | calc3_

|| | | | | MAIN_

|| 22.1% | 76.6% | 0.717390 | 19200 |#11.Do 100

|| | | | | calc1_

|| | | | | MAIN_

|| 7.6% | 84.2% | 0.246650 | 19200 |calc2_

|| | | | | MAIN_

|| 6.7% | 90.9% | 0.216527 | 19168 |calc3_

|| | | | | MAIN_

|| 6.0% | 96.8% | 0.193464 | 19200 |calc1_

|| | | | | MAIN_

|| 2.7% | 99.6% | 0.088788 | 16 |MAIN_

|| | | | | (N/A)

|| 0.1% | 99.7% | 0.004442 | 19200 |#10.Calc1

|| | | | | MAIN_

106 S–2376–41

Recommended Experiments [5]

|| 0.1% | 99.8% | 0.003707 | 19168 |#30.Calc3

|| | | | | MAIN_

|| 0.1% | 99.9% | 0.002727 | 16 |inital_

|| | | | | MAIN_

|| 0.1% | 100.0% | 0.002498 | 19200 |#20.Calc2

|| | | | | MAIN_

|===

5.2.3 Call Tree Profile

The Call Tree report provides the top-down view of the same information as is
provided in the Callers report. In this example, we can also examine source file
name and line number information.

> pat_run -O ct+src yod yod_options program_name+pat

Note: The calltree argument can be abbreviated to ct.

On completion of execution, pat_run produces the same output directory and
files as described in Section 5.2.1, page 103.

To look at the Call Tree report, either cat the report file or use pat_report as
shown in the following example:

> pat_report pat_run.sequence_number

The Call Tree report lists the conditions of program execution, the functions that
were traced, and their associated source file locations (if available). Again, the
core of the report is Table 1, which lists the amount of time and number of calls to
each function, along with the top-down view of the call tree.

Notes for table 1:

High level option: -O calltree+src

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b exp,ct,pe=HIDE \

-s show_ca='fu,so,li' -s source_limit='1'

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

S–2376–41 107

Using Cray® Performance Analysis Tools

Table 1: Calltree View with Callsite Line Numbers

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Calltree

| | | | PE='HIDE'

100.0% | 100.0% | 3.169577 | 172832 |Total

|---

| 67.3% | 67.3% | 2.132173 | 115200 |MAIN_:swim_mpi.F:line.121

||--

|| 45.6% | 45.6% | 0.972216 | 19200 |calc2_:swim_mpi.F:line.600

|| | | | | #21.Do 200:swim_mpi.F:line.600

|| 33.7% | 79.3% | 0.717727 | 19200 |calc1_:swim_mpi.F:line.430

|| | | | | #11.Do 100:swim_mpi.F:line.430

|| 11.5% | 90.7% | 0.244945 | 19200 |calc2_:swim_mpi.F:line.550

|| 8.9% | 99.7% | 0.190360 | 19200 |calc1_:swim_mpi.F:line.384

|| 0.2% | 99.9% | 0.004410 | 19200 |#10.Calc1:swim_mpi.F:line.121

|| 0.1% | 100.0% | 0.002516 | 19200 |#20.Calc2:swim_mpi.F:line.121

||==

| 32.2% | 99.5% | 1.021536 | 57504 |MAIN_:swim_mpi.F:line.208

||--

|| 99.6% | 99.6% | 1.017836 | 38336 |calc3_:swim_mpi.F:line.753

|||---

||| 78.7% | 78.7% | 0.801508 | 19168 |#31.Do 300:swim_mpi.F:line.753

||| 21.3% | 100.0% | 0.216328 | 19168 |calc3_:swim_mpi.F:line.753(exclusive)

|||===

|| 0.4% | 100.0% | 0.003700 | 19168 |#30.Calc3:swim_mpi.F:line.208

||==

| 0.4% | 99.9% | 0.012606 | 32 |MAIN_:swim_mpi.F:line.69

||--

|| 100.0% | 100.0% | 0.012604 | 16 |MAIN_:swim_mpi.F:line.69(exclusive)

||==

| 0.1% | 100.0% | 0.002610 | 32 |MAIN_:swim_mpi.F:line.87

||--

|| 99.9% | 99.9% | 0.002606 | 16 |inital_:swim_mpi.F:line.220

|| 0.1% | 100.0% | 0.000004 | 16 |#88.Inital:swim_mpi.F:line.87

|===

108 S–2376–41

Recommended Experiments [5]

5.2.4 Load Balancing Profile

The Load Balancing profile breaks out data by function and processor. This
report comes in two flavors: load_balance (or lb), which shows only
the processors having the maximum, median, and minimum times, and
load_balance_all (or lb_a), which shows the data collected for all
processors.

To generate the basic Load Balancing profile, enter this command:

> pat_run -O load_balance yod yod_options program_name+pat

On completion of execution, pat_run produces the same output directory and
files as described in Section 5.2.1, page 103.

To look at the Load Balancing profile, either cat the report file or use
pat_report as shown in the following example:

> pat_report pat_run.sequence_number

As with the other profile reports, the Load Balancing profile lists the conditions of
program execution, the functions that were traced, and their associated source
file locations (if available). However, the Load Balancing profile also includes
three tables.

S–2376–41 109

Using Cray® Performance Analysis Tools

Table 1 lists the processors with the maximum, median, and minimum times
for the entire program.

Notes for table 1:

High level option: -O load_balance_program

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b exp,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Load Balance across PE's

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |PE[mmm]

100.0% | 100.0% | 3.168538 | 172832 |Total

|---

| 6.3% | 6.3% | 3.169532 | 10802 |pe.0

| 6.2% | 56.3% | 3.168473 | 10802 |pe.4

| 6.2% | 100.0% | 3.168001 | 10802 |pe.9

|===

110 S–2376–41

Recommended Experiments [5]

Note: Compare this to the same table as produced using the pat_run -O
lb_a argument. The sole difference between these two reports is the use of the
-b pe report option.

Notes for table 1:

High level option: -O load_balance_program

Low level options: -d ti%@0.05,cum_ti%,ti,tr -b exp,pe

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 1: Load Balance across PE's

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |PE

100.0% | 100.0% | 3.176571 | 172832 |Total

|---

| 6.3% | 6.3% | 3.177569 | 10802 |pe.0

| 6.3% | 12.5% | 3.176991 | 10802 |pe.8

| 6.3% | 18.8% | 3.176899 | 10802 |pe.12

| 6.3% | 25.0% | 3.176844 | 10802 |pe.1

| 6.3% | 31.3% | 3.176764 | 10802 |pe.2

| 6.3% | 37.5% | 3.176705 | 10802 |pe.14

| 6.3% | 43.8% | 3.176626 | 10802 |pe.15

| 6.3% | 50.0% | 3.176578 | 10802 |pe.13

| 6.2% | 56.3% | 3.176511 | 10802 |pe.4

| 6.2% | 62.5% | 3.176422 | 10802 |pe.3

| 6.2% | 68.8% | 3.176397 | 10802 |pe.6

| 6.2% | 75.0% | 3.176337 | 10802 |pe.5

| 6.2% | 81.3% | 3.176227 | 10802 |pe.10

| 6.2% | 87.5% | 3.176167 | 10802 |pe.7

| 6.2% | 93.8% | 3.176067 | 10802 |pe.11

| 6.2% | 100.0% | 3.176038 | 10802 |pe.9

|===

S–2376–41 111

Using Cray® Performance Analysis Tools

Table 2 lists the processors with the maximum, median, and minimum times,
broken out by group. In the case of a simple program, this can appear to be
nearly identical to Table 1.

Notes for table 2:

High level option: -O load_balance_group

Low level options: -d ti%@0.05,cum_ti%,ti,tr \

-b exp,gr,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

Table 2: Load Balance across PE's by FunctionGroup

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Group

| | | | PE[mmm]

100.0% | 100.0% | 3.168538 | 172832 |Total

|---

| 100.0% | 100.0% | 3.168532 | 172800 |USER

||--

|| 6.3% | 6.3% | 3.169526 | 10800 |pe.0

|| 6.2% | 56.3% | 3.168467 | 10800 |pe.4

|| 6.2% | 100.0% | 3.167995 | 10800 |pe.9

|===

Table 3 shows the processors having the maximum, median, and minimum times
for each function.

Notes for table 3:

High level option: -O load_balance_function

Low level options: -d ti%@0.05,cum_ti%,ti,tr \

-b exp,gr,fu,pe=[mmm]

This table shows only lines with Time% > 0.05.

Percentages at each level are relative

(for absolute percentages, specify: -s percent=a).

112 S–2376–41

Recommended Experiments [5]

Table 3: Load Balance across PE's by Function

Time % | Cum. | Time | Calls |Experiment=1

| Time % | | |Group

| | | | Function

| | | | PE[mmm]

100.0% | 100.0% | 3.168538 | 172832 |Total

|---

| 100.0% | 100.0% | 3.168532 | 172800 |USER

||--

|| 30.7% | 30.7% | 0.972323 | 19200 |#21.Do 200

|||---

||| 6.6% | 6.6% | 1.023498 | 1200 |pe.6

||| 6.5% | 58.6% | 1.007495 | 1200 |pe.14

||| 2.8% | 100.0% | 0.436098 | 1200 |pe.15

|||===

|| 25.3% | 56.0% | 0.801415 | 19168 |#31.Do 300

|||---

||| 6.6% | 6.6% | 0.841303 | 1198 |pe.2

||| 6.5% | 58.8% | 0.834668 | 1198 |pe.14

||| 2.2% | 100.0% | 0.288074 | 1198 |pe.15

|||===

|| 22.6% | 78.6% | 0.717126 | 19200 |#11.Do 100

|||---

||| 6.6% | 6.6% | 0.763003 | 1200 |pe.1

||| 6.5% | 59.0% | 0.744379 | 1200 |pe.10

||| 2.3% | 100.0% | 0.266113 | 1200 |pe.15

|||===

|| 7.7% | 86.3% | 0.244296 | 19200 |calc2_

|||---

||| 18.2% | 18.2% | 0.711280 | 1200 |pe.15

||| 4.9% | 72.8% | 0.190003 | 1200 |pe.10

||| 3.6% | 100.0% | 0.141949 | 1200 |pe.3

|||===

|| 6.8% | 93.1% | 0.216109 | 19168 |calc3_

|||---

||| 25.0% | 25.0% | 0.866162 | 1198 |pe.15

||| 4.7% | 67.7% | 0.160999 | 1198 |pe.12

||| 4.6% | 100.0% | 0.158193 | 1198 |pe.1

|||===

S–2376–41 113

Using Cray® Performance Analysis Tools

|| 6.0% | 99.1% | 0.190151 | 19200 |calc1_

|||---

||| 19.1% | 19.1% | 0.581893 | 1200 |pe.15

||| 6.4% | 78.8% | 0.193876 | 1200 |pe.9

||| 2.4% | 100.0% | 0.074260 | 1200 |pe.2

|||===

|| 0.4% | 99.6% | 0.013033 | 16 |MAIN_

|||---

||| 37.8% | 37.8% | 0.078807 | 1 |pe.0

||| 4.1% | 72.3% | 0.008646 | 1 |pe.1

||| 3.7% | 100.0% | 0.007613 | 1 |pe.15

|||===

|| 0.1% | 99.7% | 0.004572 | 19200 |#10.Calc1

|||---

||| 7.5% | 7.5% | 0.005452 | 1200 |pe.6

||| 6.4% | 60.3% | 0.004646 | 1200 |pe.0

||| 3.6% | 100.0% | 0.002622 | 1200 |pe.15

|||===

|| 0.1% | 99.8% | 0.003761 | 19168 |#30.Calc3

|||---

||| 6.8% | 6.8% | 0.004064 | 1198 |pe.10

||| 6.4% | 59.1% | 0.003862 | 1198 |pe.9

||| 3.8% | 100.0% | 0.002258 | 1198 |pe.15

|||===

|| 0.1% | 99.9% | 0.002552 | 19200 |#20.Calc2

|||---

||| 9.0% | 9.0% | 0.003671 | 1200 |pe.0

||| 6.1% | 60.7% | 0.002487 | 1200 |pe.7

||| 5.4% | 100.0% | 0.002214 | 1200 |pe.3

|||===

|| 0.1% | 100.0% | 0.002543 | 16 |inital_

|||---

||| 8.9% | 8.9% | 0.003603 | 1 |pe.15

||| 6.1% | 57.6% | 0.002470 | 1 |pe.2

||| 6.1% | 100.0% | 0.002463 | 1 |pe.12

|===

114 S–2376–41

Recommended Experiments [5]

5.2.5 MPI Profile

MPI code is a special case. To profile MPI behavior, you must first use the
pat_build -g option to instrument the program to collect MPI data, as shown
in this example:

> pat_build -g mpi -u myprogram

After doing so, enter this command to generate an MPI profile:

> pat_run -O mpi yod yod_options program_name+pat

On completion of execution, pat_run produces the same output directory and
files as described in Section 5.2.1, page 103.

To look at the MPI profile, either cat the report file or use pat_report as
shown in the following example:

> pat_report pat_run.sequence_number

As with the other profile reports, the MPI profile lists the conditions of program
execution. However, this report will also list a significantly longer list of function
entry points that were traced, and the source file locations for the MPI functions
will generally be marked NA, for "Not Available."

Table 1 is the core of the report and it is similar to the basic Profile report
described in Section 5.2.1, page 103, except that it also includes MPI functions.

Notes for table 1:

High level option: -O mpi

Low level options: -d sc@,mb1..7 -b exp,fu,ca,pe=[mmm]

This table shows only lines with Sent Msg Count > 0.

Table 1: MPI Sent Messages Stats by Bucket

Sent | MsgSz | 256B<= |Experiment=1

Msg | <16B | MsgSz |Function

Count | | <4KB | Caller

| | | PE[mmm]

157195 | 15590 | 141605 |Total

|-------------------------------------

| 157195 | 15590 | 141605 |mpi_isend_

S–2376–41 115

Using Cray® Performance Analysis Tools

||------------------------------------

|| 79200 | 3600 | 75600 |calc2_

|| | | | MAIN_

||||----------------------------------

|||| 7200 | 2400 | 4800 |pe.0

|||| 4800 | -- | 4800 |pe.14

|||| 4800 | -- | 4800 |pe.5

||||==================================

|| 63600 | 4800 | 58800 |calc1_

|| | | | MAIN_

||||----------------------------------

|||| 7200 | 2400 | 4800 |pe.0

|||| 3600 | -- | 3600 |pe.2

|||| 3600 | -- | 3600 |pe.5

||||==================================

|| 14376 | 7188 | 7188 |calc3_

|| | | | MAIN_

||||----------------------------------

|||| 14376 | 7188 | 7188 |pe.0

|||| 0 | -- | -- |pe.15

|||| 0 | -- | -- |pe.5

||||==================================

|| 19 | 2 | 17 |inital_

|| | | | MAIN_

||||----------------------------------

|||| 3 | 1 | 2 |pe.15

|||| 1 | -- | 1 |pe.2

|||| 1 | -- | 1 |pe.5

|=====================================

116 S–2376–41

Using Cray Apprentice2 [6]

Cray Apprentice2 is an interactive X Window System tool for visualizing and
manipulating performance analysis data captured during program execution.
Cray Apprentice2 features the familiar "tabbed window" user interface and
can display a wide variety of reports and graphs, depending on the type of
program being analyzed, the computer system on which the program was run,
the software tools used to capture data, and the particular performance analysis
experiments that were conducted during program execution.

Cray Apprentice2 is not a component of CrayPat, nor is it restricted to analyzing
data generated on any particular Cray system.

Rather, Cray Apprentice2 is a platform-independent post-processing data
visualization tool. You do not set up or run performance analysis experiments
from within Cray Apprentice2. Instead, use a tool such as CrayPat first, to
instrument your program and conduct performance analysis experiments, and
then use Cray Apprentice2 afterwards to view and explore the resulting data
files.

Note: The number and appearance of the reports that can be generated using
Cray Apprentice2 is determined solely by the kind and quantity of data
captured during program execution. For example, if you use Cray Apprentice2
to analyze data captured using CrayPat on a Cray XT4 system, changing the
PAT_RT_SUMMARY environment variable to 0 (zero) before executing the
instrumented program will nearly double the number of reports available
when analyzing the resulting data in Cray Apprentice2.

6.1 Launching the Program

To begin using Cray Apprentice2, load the apprentice2 module. If this module
is not part of your default work environment, enter the following command to
load it:

> module load apprentice2

Note: You do not need to have the CrayPat module loaded in order to use
Cray Apprentice2.

To launch the Cray Apprentice2 application, enter this command:

> app2 &

S–2376–41 117

Using Cray® Performance Analysis Tools

Note: Cray Apprentice2 requires that your workstation be configured to host
X Window System sessions. If the app2 command returns an "unable to open
display" error, see Section 1.1.7, page 9 for information about configuring
X Window System hosting.

If the data is in .ap2 file format (see Section 6.2, page 118), you can specify a data
file to read in and parse when you launch Cray Apprentice2. For example, to
open the application and read in a data file, enter this command:

> app2 data_file_name.ap2 &

The app2 command supports two options: --limit and --limit_per_pe.
These options enable you to restrict the amount of data being read in from the
data file. Both options recognize the K, M, and G abbreviations for kilo, mega,
and giga; for example, to open an .ap2 data file and limit Cray Apprentice2 to
reading in the first 3 million data items, enter this command:

> app2 --limit 3M data_file.ap2 & &

The --limit option sets a global limit on data size. The --limit_per_pe
sets the limit on a per processing element basis. Depending on the nature of
the program being examined and the internal structure of the data file being
analyzed, the --limit_per_pe is generally preferable, as it preserves data
parallelism.

For more information about the app2 command, see the app2(1) man page.

6.2 Opening Data Files

If you specified a valid data file or directory on the app2 command line, the file
or directory is opened and the data is read in, parsed, and displayed.

If you did not specify a data file or directory on the command line, the File
Selection window is displayed.

118 S–2376–41

Using Cray Apprentice2 [6]

Figure 1. File Selection

Note: As with all other screens in Cray Apprentice2, the exact appearance
of the File Selection window varies depending on which version of the GTK
toolkit is installed on your X Windows System workstation.

Cray Apprentice2 recognizes the following data file types:

• .ap2 files: experiment data files in the compressed XML format native to
Cray Apprentice2. Any .ap2 data file can be opened using Cray Apprentice2.

Note: If your program was instrumented using the CrayPat pat_build -A
option, it produces an .ap2 format data file by default. If it was not, use
the pat_report -f ap2 command to convert the .xf format data file
produced by CrayPat into an .ap2 format file.

• .xml files: experiment data files in plain-text XML format. Any .xml
data file or directory containing .xml data files can by opened using
Cray Apprentice2.

After you select a data file, the data is read in. When Cray Apprentice2 finishes
parsing the data, the Overview is displayed.

S–2376–41 119

Using Cray® Performance Analysis Tools

6.3 Basic Navigation

Cray Apprentice2 displays a wide variety of reports, depending on the program
being studied, the type of experiment performed, and the data captured during
program execution. While the number and content of reports varies, all reports
share the following general navigation features.

Figure 2. Screen Navigation

120 S–2376–41

Using Cray Apprentice2 [6]

Table 15. Cray Apprentice2 Navigation Functions

Callout Description

1 The File menu enables you to open data files or directories,
capture the current screen display to a .jpg file, or exit from
Cray Apprentice2.

2 The Data tab shows the name of the data file currently
displayed. You can have multiple data files open
simultaneously for side-by-side comparisons of data from
different program runs. Click a data tab to bring a data set to
the foreground. Right-click the tab for additional options.

3 The Report toolbar show the reports that can be displayed
for the data currently selected. Hover the cursor over an
individual report icon to display the report name. To view a
report, click the icon.

4 The Report tabs show the reports that have been displayed
thus far for the data currently selected. Click a tab to bring
a report to the foreground. Right-click a tab for additional
report-specific options.

5 The main display varies depending on the report selected and
can be resized to suit your needs. However, most reports
feature pop-up tips that appear when you allow the cursor
to hover over an item, and active data elements that display
additional information in response to left or right clicks.

6 On many reports, the total duration of the experiment
is shown as a graduated bar at the bottom of the report
window. Move the caliper points left or right to restrict or
expand the span of time represented by the report. This is a
global setting for each data file: moving the caliper points in
one report affects all other reports based on the same data,
unless those other reports have been detached or frozen.

S–2376–41 121

Using Cray® Performance Analysis Tools

All report tabs feature right-click menus, which display both common options
and additional report-specific options. The common right-click menu options
are described in Table 16. Report-specific options are described in Section 6.4,
page 122.

Table 16. Common Panel Actions

Option Description

Screendump Capture the report or graphic image currently
displayed and save it to a .jpg file.

Detach Panel Display the report in a new window.

Remove Panel Close the window and remove the report tab from the
main display.

Freeze Panel Freeze the report as shown. Subsequent changes to
the caliper points do not change the appearance of the
frozen report.

Panel Help Display report-specific help, if available.

6.4 Viewing Reports

The reports Cray Apprentice2 produces vary depending on the types of
performance analysis experiments conducted and the data captured during
program execution. The report icons indicate which reports are available for the
data file currently selected. Not all reports are available for all data.

The following sections describe the individual reports.

6.4.1 Overview Report

The Overview Report is the default report. Whenever you open a data file, this is
the first report displayed.

122 S–2376–41

Using Cray Apprentice2 [6]

Figure 3. Overview: Pie Chart

S–2376–41 123

Using Cray® Performance Analysis Tools

When the Overview Report is displayed, look for:

• In the pie chart on the left, the calls and functions in the program, sorted by
the number of times the calls or functions were invoked and expressed as a
percentage of the total call volume.

• In the pie chart on the right, the calls and functions in the program, sorted by
the amount of time spent performing the calls or functions and expressed as
a percentage of the total program execution time.

• Hover the cursor over any section of a pie chart to display a pop-up window
containing specific detail about that call or function.

• Right-click the Report Tab to display a pop-up menu that lets you show or
hide compute time. Hiding compute time is useful if you want to focus on the
communications aspects of the program.

• Alternately, click the Toggle to view this report as a bar graph.

124 S–2376–41

Using Cray Apprentice2 [6]

Figure 4. Overview: Bar Graph

The Overview report is a good general indicator of how much time your program
is spending performing which activities and a good place to start looking for
load imbalance. For example, in the pie chart view we can see that, while calls
to mpi_allreduce comprise just 11.3 percent of the total call volume, they
consume 50.7 percent of the execution time.

To explore this further, click the function of interest—in this example,
mpi_allreduce—to display a Load Balance Report for the function.

S–2376–41 125

Using Cray® Performance Analysis Tools

Figure 5. Load Balance Report

The Load Balance Report shows:

• The load balance information for the function you selected on the Overview
Report. This report can be sorted by either PE, Calls, or Time. Click a column
heading to sort the report by the values in the selected column.

• The minimum, maximum, and average times spent in this function, as well
as standard deviation.

• Hover the cursor over any bar to display PE-specific quantitative detail.

126 S–2376–41

Using Cray Apprentice2 [6]

Together, the Overview and Load Balance reports provide a good first look
at the behavior of the program during execution and can help you identify
opportunities for improving code performance. Look for functions that take
a disproportionate amount of total execution time and for PEs that spend
considerably more time in a function than other PEs do in the same function.
This may indicate a coding error, or it may be the result of a data-based load
imbalance.

To further examine load balancing issues, examine the Mosaic and Delta View
reports (if available), and look for any communication "hotspots" that involve the
PEs identified on the Load Balance Report.

6.4.2 Environment Reports

The Environment Reports provide general information about the conditions
under which the data file currently being examined was created. As a rule, this
information is useful only when trying to determine whether changes in system
configuration have affected program performance.

The Environment Reports consists of four panes. The Env Vars pane lists the
values of the system environmental variables that were set at the time the
program was executed.

Note: This does not include the pat_build or CrayPat environment variables
that were set at the time of program execution.

S–2376–41 127

Using Cray® Performance Analysis Tools

Figure 6. Environment: Environment Variables

128 S–2376–41

Using Cray Apprentice2 [6]

The System Info pane lists information about the operating system.

Figure 7. Environment: System Information

S–2376–41 129

Using Cray® Performance Analysis Tools

The Resource Limits pane lists the system resource limits that were in effect at
the time the program was executed.

Figure 8. Environment: Resource Limits

130 S–2376–41

Using Cray Apprentice2 [6]

The Heap Info pane lists heap usage information.

Figure 9. Environment: Heap Information

There are no active data elements or right-click menu options in any of the
Environment Reports.

S–2376–41 131

Using Cray® Performance Analysis Tools

6.4.3 Traffic Report

The Traffic Report shows internal PE-to-PE traffic over time.

Figure 10. Traffic Report

132 S–2376–41

Using Cray Apprentice2 [6]

The information on this report is broken out by communication type (read, write,
barrier, and so on). While this report is displayed, you can:

• Hover over an item to display quantitative information.

• Zoom in and out, either by using the zoom buttons or by drawing a box
around the area of interest.

• Right-click an area of interest to open a pop-up menu, which enables you to
hide the origin or destination of the call or go to the callsite in the source code,
if the source file is available.

• Right-click the report tab to access alternate zoom in and out controls, or
to filter the communications shown on the report by the duration of the
messages.

Filtering messages by duration is useful if you're only interested in a
particular group of messages. For example, to see only the messages that take
the most time, move the filter caliper points to define the range you want, and
then click the Apply button.

The Traffic Report is often quite dense, and typically requires zooming in to
reveal meaningful data.

S–2376–41 133

Using Cray® Performance Analysis Tools

Figure 11. Traffic Report (Detail)

Look for large blocks of barriers that are being held up by a single PE. This may
indicate that the single PE is waiting for a transfer, or it can also indicate that
the rest of the PEs are waiting for that PE to finish a computational piece before
continuing.

6.4.4 Text Report

The Text Report is a simple plain-text report listing activity by PE.

134 S–2376–41

Using Cray Apprentice2 [6]

Figure 12. Text Report

The Text Report is similar to the output produced by tools such as pat_report.
There are no interactive functions on this report.

6.4.5 Mosaic Report

The Mosaic Report depicts the matrix of communications between source and
destination PEs, using colored blocks to represent the relative communication
times between PEs.

S–2376–41 135

Using Cray® Performance Analysis Tools

Figure 13. Mosaic Report

By default, this report is based on average communication times. Right-click on
the report tab to display a pop-up menu that gives you the choice of basing this
report on the Total Calls, Total Time, Average Time, or Maximum Time.

The graph is color-coded. Light green blocks indicates good values, while dark
red blocks may indicate problem areas. Hover the cursor over any block to show
the actual values associated with that block.

Use the diagonal scrolling buttons in the lower right corner to scroll through the
report and look for red "hot spots." These are generally an indication of bad data
locality and may represent an opportunity to improve performance by better
memory or cache management.

136 S–2376–41

Using Cray Apprentice2 [6]

6.4.6 Activity Report

The Activity Report shows communication activity over time, bucketed by logical
function such as synchronization. Compute time is not shown.

Figure 14. Activity Report

Look for high levels of usage from one of the function groups, either over the
entire duration of the program or during a short span of time that affects other
parts of the code.

You can use the calipers to filter out the startup and close-out time, or to narrow
the data being studied down to a single iteration.

S–2376–41 137

Using Cray® Performance Analysis Tools

Compare this report to the Delta View Report, which examines the same
information, but broken down by PE. By using the two reports together, it's
possible to identify times when exceptional activity it taking place, and then
narrow the focus down to a specific PE that may be obstructing forward progress
by sending or receiving large amounts of critical data.

6.4.7 Delta View

The Delta View is similar to the Activity Report, except that it illustrates activity
as a percentage of time consumed on a per PE basis and highlights relative
changes over time.

Figure 15. Delta View

This report is similar to the Mosaic Report, and can be thought of as being a
combination of the Mosaic and Activity reports.

138 S–2376–41

Using Cray Apprentice2 [6]

By default, this report is based on synchronization data. Right-click the
report tab to display a pop-up menu that gives you the choice of basing this
report on Source Calls, Source Time, Destination Calls, Destination Time, or
Synchronization.

Look for red "hot spots;" one PE that's doing more data transmission than the
others, or one PE that is holding critical data and thus causing the other PEs to
wait before proceeding.

6.4.8 Function Report

The Function Report is a table showing the time spent by function, as both a wall
clock time and percentage of total run time.

Figure 16. Function Report

S–2376–41 139

Using Cray® Performance Analysis Tools

This report also shows the number of calls to the function, the number of call sites
in the code that call the function, the extent to which the call is imbalanced, and
the potential savings that would result if the function were perfectly balanced.

This is an active report. Click on any column heading to sort the report by that
column, in ascending or descending order. In addition, if a source file is listed for
a given function, you can click on the function name and open the source file
at the point of the call.

Look for routines with high usage, a small number of call sites, and the largest
imbalance and potential savings, as these are the often the best places to focus
your optimization efforts.

6.4.9 Call Graph

The Call Graph shows the calling structure of the program as it ran and charts
the relationship between callers and callees in the program. This report is a good
way to get a sense of what is calling what in your program, and how much
relative time is being spent where.

Figure 17. Call Graph

140 S–2376–41

Using Cray Apprentice2 [6]

Each call site is a separate node on the chart. The relative horizontal size of a
node indicates the cumulative time spent in the node's children. The relative
vertical size of a node indicates the amount of time being spent performing the
computation function in that particular node.

Nodes that contain only callers are green in color.

By default, routines that do not lead to the top routines are hidden.

Nodes that contain callees and represent significant computation time also
include stacked bar graphs, which present load-balancing information. The
yellow bar in the background shows the maximum time, the purple bar on the
left shows the average time, and the cyan (light blue) bar on the right shows the
minimum time spent in the function. The larger the yellow area visible within a
node, the greater the load imbalance.

While the Call Graph report is displayed, you can:

• Hover the cursor over any node to further display quantitative data for that
node.

• Double-click on leaf node to display a Load Balance report for that callsite.

• Right-click the report tab to display a pop-up menu. The options on this menu
enable you to change this report so that it shows all times as percentages or
actual times, or highlights imbalance percentages and the potential savings
from correcting load imbalances. This menu also enables you to filter the
report by time, so that only the nodes representing large amounts of time are
displayed, or to unhide everything that has been hidden by other options
and restore the default display.

• Right-click any node to display another pop-up menu. The options on this
menu enable you to hide this node, use this node as the base node (thus
hiding all other nodes except this node and its children), jump to this node's
caller, or go to the source code, if available.

• Use the zoom control in the lower right corner to change the scale of the
graph. This can be useful when you are trying to visualize the overall
structure.

• Use the Search control in the lower center to search for a particular node by
function name.

• Use the >> toggle in the lower left corner to show or hide an index that lists
the functions on the graph by name. When the index is displayed, you can
double-click a function name in the index to find that function in the Call
Graph.

S–2376–41 141

Using Cray® Performance Analysis Tools

6.4.10 I/O Reports

The I/O reports are available only if I/O traffic information has been captured. In
general, these reports are useful for identifying I/O bottlenecks and conflicts.

There are three I/O reports:

• I/O Overview

• I/O Traffic

• I/O Rates

6.4.10.1 I/O Overview Report

The I/O Overview Report is similar to the Load Balance Report, but shows I/O
operations and cumulative times by file descriptor. Like the Load Balance Report,
it can help you identify opportunities to improve performance by correcting
imbalances in the distribution of I/O work.

Figure 18. I/O Overview

142 S–2376–41

Using Cray Apprentice2 [6]

This report can be sorted by clicking on the column headings.

6.4.10.2 I/O Traffic Report

The I/O Traffic Report shows the I/O information in more detail, breaking it out
by file descriptor and PE and showing when the I/O traffic occurs during the
execution timeline of the program. In addition, this report breaks out the I/O
traffic by type of activity, whether read, write, or housekeeping.

Figure 19. I/O Traffic

Use the Zoom buttons to take a closer look at areas of interest. Alternately, you
can use the cursor to draw a box around an area of interest and zoom in on it
automatically.

Look for long horizontal bars that represent large I/O transfers or a number of
back-to-back transfers, and consider whether it might be possible to break such
transfers up into smaller and faster events. Also, examine when I/O activity
occurs, as it may affect the computational portions of the application.

S–2376–41 143

Using Cray® Performance Analysis Tools

6.4.10.3 I/O Rates

The I/O Rates Report is a table listing quantitative information about the
program's I/O usage.

Figure 20. I/O Rates

The report can be sorted by any column, in either ascending or descending order.
Click on a column heading to change the way that the report is sorted.

Look for I/O activities that have low average rates and high data volumes. This
may be an indicator that the file should be moved to a different file system.

144 S–2376–41

Using Cray Apprentice2 [6]

6.4.11 Hardware Reports

The Hardware reports are available only if hardware counter information has
been captured. There are two Hardware reports:

• Hardware Counters Overview

• Hardware Counters Plot

6.4.11.1 Hardware Counters Overview Report

The Hardware Counters Overview Report is a bar graph showing hardware
counter activity by call and function, for both actual and derived PAPI metrics.

Figure 21. Hardware Counters Overview

S–2376–41 145

Using Cray® Performance Analysis Tools

While this report is displayed, you can:

• Hover the cursor over a call or function to display quantitative detail.

• Click the "arrowhead" toggles to show or hide more information.

6.4.11.2 Hardware Counters Plot

The Hardware Counters Plot displays hardware counter activity over time and
resembles an EKG trace or a seismographic chart.

Figure 22. Hardware Counters Plot

146 S–2376–41

Using Cray Apprentice2 [6]

Use this report to look for correlations between different kinds of activity. This
report is most useful when you are more interested in knowing when a change in
activity happens, rather than in the precise quantity of the change.

Look for slopes, trends, and drastic changes across multiple counters. For
example, a sudden decrease in floating point operations, accompanied by a
sudden increase in L1 cache activity, may indicate a problem with caching or
data locality. To zero-in on problem areas, use the calipers to narrow the focus to
time-spans of interest on this graph, and then look at other reports to learn what
is happening at these times.

To display the value of a specific data point, along with the maximum value,
hover the cursor over the area of interest on the chart.

S–2376–41 147

Using Cray® Performance Analysis Tools

148 S–2376–41

Cray XT Series Hardware Counters [A]

CrayPat supports both predefined hardware counter groups and individual
hardware counters. The hardware counter group numbers (1-9) may be used
as arguments for the pat_run -g or pat_hwpc -g options or as values for
the PAT_RT_HWPC or PAT_HWPC_EVENT_SET environment variables. The
individual counters are either actual or PAPI-derived counters, and may be used
as values for the PAT_RT_HWPC runtime environment variable.

For additional information about hardware counters and AMD native events, see
the hwpc(3) and papi_counters(5) man pages.

Table 17 shows the valid hardware counter groups.

Table 17. Hardware Counter Groups

Group Counters Description

1 PAPI_FP_OPS Floating point operations

PAPI_L1_DCA Level 1 data cache accesses

DC_MISS Total Level 1 data cache misses

PAPI_TLB_DM Data translation lookaside
buffer misses

2 PAPI_L1_DCA Level 1 data cache accesses

DC_L2_REFILL_MOESI Total refills from Level 2

DC_SYS_REFILL_MOESI Total refills from system (L2
cache misses)

BU_L2_REQ_DC L2 data cache accesses

3 PAPI_L1_DCA L1 data cache accesses

PAPI_L1_DCM L1 data cache misses

DC_L2_REFILL_MOES Data cache refills from L2

DC_COPYBACK_MOESI Total copyback

4 PAPI_FP_OPS Floating point operations

S–2376–41 149

Using Cray® Performance Analysis Tools

Group Counters Description

PAPI_FAD_INS Floating point add instructions

PAPI_FML_INS Floating point multiply
instructions

FP_FAST_FLAG Floating point operations that
use the fast flag interface

5 FR_FPU_X87 X87 instructions

FR_FPU_MMX_3D MMX and 3DNow instructions

FR_FPU_SSE_SSE2_PACKED Packed SSE and SSE2
instructions

FR_FPU_SSE_SSE2_SCALAR Scalar SSE and SSE2
instructions

6 PAPI_RES_STL Cycles stalled on any resource

PAPI_FPU_IDL Cycles floating point units are
idle

PAPI_STL_ICY Cycles with no instruction issue

IC_FETCH_STALL Instruction fetch stall

7 FR_DISPATCH_STALLS Cycles stalled on any resource

FR_DISPATCH_STALLS_FULL_FPU Stalls when FPU is full

FR_DISPATCH_STALLS_FULL_LS Stalls when LS is full

FR_DECODER_EMPTY Cycles with no instruction issue

8 PAPI_TOT_INS Instructions completed

IC_MISS L1 instruction cache misses

PAPI_BR_TKN Branches taken

PAPI_BR_MSP Branches mispredicted

9 PAPI_L1_ICA L1 instruction cache accesses

IC_MISS L1 instruction cache misses

150 S–2376–41

Cray XT Series Hardware Counters [A]

Group Counters Description

PAPI_L2_ICM L2 instruction cache misses

IC_L2_REFILL Instruction cache refills from L2

Table 18 lists some of the more commonly used actual and derived hardware
counters. Additional counters are listed in the papi_counters(5) man page.

Table 18. Common Hardware Counters

Name Derived? Description

PAPI_L1_DCM Yes Level 1 data cache misses

PAPI_L1_ICM Yes Level 1 instruction cache misses

PAPI_L2_DCM No Level 2 data cache misses

PAPI_L2_ICM No Level 2 instruction cache misses

PAPI_L1_TCM Yes Level 1 total cache misses

PAPI_l2_TCM Yes Level 2 total cache misses

PAPI_FPU_IDL No Cycles floating point units are idle

PAPI_TLB_DM No Data translation lookaside buffer misses

PAPI_TLB_IM No Instruction translation lookaside buffer
misses

PAPI_TLB_TL Yes Total translation lookaside buffer misses

PAPI_L1_LDM Yes Level 1 load misses

PAPI_L1_STM No Level 1 store misses

PAPI_L2_LDM Yes Level 2 load misses

PAPI_L2_STM No Level 2 store misses

PAPI_STL_ICY No Cycles with no instruction issue

PAPI_HW_INT No Hardware interrupts

PAPI_BR_TKN No Conditional branch instructions taken

PAPI_BR_MSP No Conditional branch instructions
mispredicted

PAPI_TOT_INS No Total instructions completed

PAPI_FP_INS No Total floating point instructions

S–2376–41 151

Using Cray® Performance Analysis Tools

Name Derived? Description

PAPI_BR_INS No Total branch instructions

PAPI_VEC_INS No Vector/SIMD instructions

PAPI_RES_STL No Cycles stalled on any resource

PAPI_TOT_CYC No Total cycles

PAPI_L1_DCH Yes Level 1 data cache hits

PAPI_L2_DCH No Level 2 data cache hits

PAPI_L1_DCA No Level 1 data cache accesses

PAPI_L2_DCA Yes Level 2 data cache reads

PAPI_L2_DCW Yes Level 2 data cache writes

PAPI_L1_ICH Yes Level 1 instruction cache hits

PAPI_L2_ICH No Level 2 instruction cache hits

PAPI_L1_ICA No Level 1 instruction cache accesses

PAPI_L2_ICA Yes Level 2 instruction cache accesses

PAPI_L1_ICR No Level 1 instruction cache reads

PAPI_L1_TCH Yes Level 1 total cache hits

PAPI_L1_TCA Yes Level 1 total cache accesses

PAPI_L2_TCA Yes Level 2 total cache accesses

PAPI_FML_INS No Floating point multiply instructions

PAPI_FAD_INS No Floating point add instructions

PAPI_FP_OPS No Floating point operations

152 S–2376–41

Build Directives [B]

Build directives files are used with the pat_build -d option to give
detailed instructions for creating instrumented programs, as described
in Section 2.2.7, page 29. The following example file can be found in the
$PAT_ROOT/lib/cnos64/ directory and may be copied and modified as
needed in order to create customized libraries for instrumenting your code.

#

(C) COPYRIGHT CRAY INC.

UNPUBLISHED PROPRIETARY INFORMATION.

ALL RIGHTS RESERVED.

#

invalid=_profil

invalid=_sprofil

invalid=_ptrace

invalid=_timer_create

trace=!_exit

trace=!setjmp

trace=!_setjmp

trace=!sigsetjmp

trace=!_sigsetjmp

tracemax=1024

link-ignore=*-L

link-ignore=--start

link-ignore=--end

link-ignore=--start-group

link-ignore=--end-group

ccom-opts=-c

ccom-opts=-D

ccom-opts=XF_TRT_FUNC=10

varargs=0

traceuser=!api/

traceuser=!/bison/

traceuser=!/catamount/

traceuser=!catmalloc/

traceuser=!gen/

traceuser=!/glibc/

traceuser=!/iconv/

traceuser=!/lnet/

traceuser=!/lustre/

traceuser=!/mpi/

S–2376–41 153

Using Cray® Performance Analysis Tools

traceuser=!/mpich/

traceuser=!/mpich2/

traceuser=!/mpid/

traceuser=!/pmi/

traceuser=!/portal

traceuser=!qkbridge/

traceuser=!/share/rsrel/

traceuser=!ssnal/

traceuser=!syscall/

traceuser=!/sysdeps/

traceuser=!trap/

overflow=$PAT_ROOT/lib/CounterOverflowTable

154 S–2376–41

Glossary

blade

1) A field-replaceable physical entity. A service blade consists of AMD Opteron
sockets, memory, Cray SeaStar chips, PCI-X cards, and a blade control processor.
A compute blade consists of AMD Opteron sockets, memory, Cray SeaStar chips,
and a blade control processor. 2) From a system management perspective, a
logical grouping of nodes and blade control processor that monitors the nodes
on that blade.

Catamount

The microkernel operating system developed by Sandia National Laboratories
and implemented to run on Cray XT series single-core compute nodes. See also
Catamount Virtual Node (CVN); compute node.

Catamount Virtual Node (CVN)

The Catamount microkernel operating system enhanced to run on dual-core Cray
XT series compute nodes.

class

A group of service nodes of a particular type, such as login or I/O. See also
specialization.

compute node

Runs a microkernel and performs only computation. System services cannot run
on compute nodes. See also node; service node.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man
pages, and glossary terms from a web browser.

module

See blade.

module file

A metafile that defines information specific to an application or collection of

S–2376–41 155

Using Cray® Performance Analysis Tools

applications. (This term is not related to the module statement of the Fortran
language; it is related to setting up the Cray system environment.) For example,
to define the paths, command names, and other environment variables to use the
Programming Environment for Cray systems, you use the module file PrgEnv,
which contains the base information needed for application compilations. The
module file mpt sets a number of environment variables needed for message
passing and data passing application development.

node

For UNICOS/lc systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection
network. See also processing element.

processing element

The smallest physical compute group. There are two types of processing
elements: a compute processing element consists of an AMD Opteron processor,
memory, and a link to a Cray SeaStar chip. A service processing element consists
of an AMD Opteron processor, memory, a link to a Cray SeaStar chip, and PCI-X
links.

service node

A node that performs support functions for applications and system services.
Service nodes run SUSE LINUX and perform specialized functions. There are six
types of predefined service nodes: login, IO, network, boot, database, and syslog.

specialization

The process of setting files on the shared-root file system so that unique files can
be present for a node or for a class of node.

TLB

A table (Translation Lookaside Buffer) in the processor that contains
cross-references between the virtual and real addresses of recently referenced
pages of memory.

156 S–2376–41

Index

A
Activity Graph, 137
.ap2 data files, 119
API, 69

header files, 70
aprun, 7

B
batch queueing, 8
build directives, 153

C
cache usage, 34, 94
Call Graph, 140
call stack tracing, 35
call tree, 140
call tree profile, 107
callers, 140
callers profile, 105
cannot write exp data file, 4, 34, 60
catamount, 7
CNL, 7
compiling, 12
counter groups defined, 149
Cray Apprentice2

description, 117
module, 2
navigation screen, 120
output files, 32
right-click menus, 122
starting program, 117
troubleshooting, 9, 118

CrayPat
API, 69
compiling for use with, 12
module, 2
online help system, 12
trace groups, 25

customizing reports, 43

D
data files, 55
default reports, 37
Delta View, 138

E
entry points

block tracing of, 27
increasing number traceable, 29
prevent tracing of, 26, 28
trace libraries, 26
user-defined, 27

Environment Reports, 127
environment variable

in PBS Pro, 9
environment variables, 117

in batch sessions, 33
pat_build, 31
pat_report, 54
setting, 33

execution time, 91
exporting data, 56

F
fatal runtime error, 34
file descriptor, 142
FLOPS, 98
FLOPS count, 91
Fortran 90

caution, 27
Function Report, 139
functions

user-defined, 27

G
GCC

S–2376–41 157

Using Cray® Performance Analysis Tools

-finstrument-functions option, 28

H
hardware counters, 12, 34, 59, 85, 90, 145, 149
Hardware Counters Plot, 146
header files, 70, 86
heap, 25, 131
heap statistics, 21
hwpc library, 85

I
I/O, 25, 142
I/O Traffic Report, 143
I/O transfer rate, 144

L
load balance, 141
Load Balance Graph, 125
load balance report, 109
Lustre

file system, 4
finding mount points, 4

M
math libraries, 25
MIPS, 91
module

avail, 2
Cray Apprentice2, 2
CrayPat, 2
list, 2
load, 2
man page, 2
programming environment, 5

modules
in batch sessions, 33

Modules application, 1
Mosaic Graph, 135
MPI, 25

cannot write exp data file, 4
fatal runtime error, 34

program aborts under pat_hwpc, 60
MPI profile report, 115
MPI traffic, 132
MPI_Abort, 4, 34
multi-core systems, 9

O
output files, 32, 55
Overview Graph, 122

P
pat_build, 11

prerequisites, 22
pat_hwpc, 12, 59
PAT_HWPC

cannot write exp data file, 60
pat_report, 11, 35

environment variables, 54
PAT_RT_EXPFILE_DIR, 34
PAT_RT_EXPFILE_PER_PROCESS, 34
pat_run, 11, 57
PBS Pro, 8, 14

and environment variables, 33
and modules, 33

PGCI -Mprof=func option, 28
profile report, 102

R
record locking, 4
report data files, 55
reports, 37
resource limits, 130

S
SHMEM, 25

cannot write exp data file, 4
SSE, 101
stalls, 98
stdio, 26
Streaming SIMD Extension, 101
system I/O, 26

158 S–2376–41

Index

T
time of execution, 91
trace groups, 25
tracing user-defined functions, 27
traffic, 132

U
ufs

cannot write error, 4
user-defined calls, 27
user-defined reports, 43

V
vectorization, 101

X
X Window System forwarding, 9
.xf data files, 36
.xml data files, 119

Y
yod, 7

cannot write exp data file, 4

S–2376–41 159

	Using Cray® Performance Analysis Tools
	New Features
	Preface
	Accessing Product Documentation
	Conventions
	Reader Comments
	Cray User Group

	Introduction [1]
	1.1 Getting Started on the Cray XT Series System
	1.1.1 Using Modules
	1.1.2 Special Considerations for Cray XT5 h Users
	1.1.3 Special Considerations for PAPI Users
	1.1.4 Using File Systems
	1.1.5 Using Compilers
	1.1.6 Running Programs
	1.1.6.1 Catamount and yod
	1.1.6.2 CNL and aprun
	1.1.6.3 Cray XT5 h Systems with Cray X2 Compute Nodes
	1.1.6.4 Batch Considerations

	1.1.7 Enabling X Window System Forwarding

	Getting Started with CrayPat [2]
	2.1 Basic Usage
	2.2 In More Depth: pat_build
	2.2.1 Asynchronous (Sampling) Experiments
	2.2.2 Trace Groups: -g options
	2.2.3 Trace Libraries: -t option
	2.2.4 Trace Functions: -T options
	2.2.5 User-defined Functions: -u option
	2.2.6 Using Compiler Options: -w option
	2.2.7 Build Directives: -d, -D, and -z options
	2.2.8 pat_build Environment Variables
	2.2.9 File Handling: -o, -f, and -A options

	2.3 In More Depth: program execution
	2.3.1 Batch Environments
	2.3.2 Runtime Environment Variables
	2.3.2.1 Redirecting CrayPat Output Files
	2.3.2.2 Capturing Hardware Counter Data
	2.3.2.3 Controlling Data File Size and Content

	2.4 In More Depth: pat_report
	2.4.1 Standard Reports: -O options
	2.4.2 Creating Customized Reports
	2.4.2.1 Selecting Data: -d and -P options
	2.4.2.2 Data Aggregation: -b options
	2.4.2.3 Report Appearance: -s options

	2.4.3 Working with Multiple Data Sets
	2.4.4 pat_report Environment Variables: -z options
	2.4.5 File Handling: -i and -o options
	2.4.6 Exporting Data: -f options

	2.5 Simplified Interfaces
	2.5.1 Execution and Reporting: pat_run
	2.5.1.1 Options
	2.5.1.2 Examples
	2.5.1.3 Output

	2.5.2 Hardware Counters: pat_hwpc
	2.5.2.1 Options
	2.5.2.2 Examples
	2.5.2.3 Output

	Using the CrayPat API [3]
	3.1 Header Files
	3.2 API Calls
	3.2.1 Fortran Functions
	3.2.2 C Functions

	3.3 Examples
	3.3.1 Fortran
	3.3.2 C

	Using the CrayPat hwpc Library [4]
	4.1 Header Files
	4.2 hwpc Calls
	4.3 Examples
	4.3.1 Fortran
	4.3.2 C or C++

	4.4 Selecting Hardware Counters to Record

	Recommended Experiments [5]
	5.1 Hardware Counters
	5.1.1 Time, FLOPS, and MIPS
	5.1.1.1 For More Information

	5.1.2 Cache Usage
	5.1.3 Floating Point Operations and Stalls
	5.1.4 Compiler Vectorization

	5.2 Program Profiles
	5.2.1 Basic Profile
	5.2.2 Callers Profile
	5.2.3 Call Tree Profile
	5.2.4 Load Balancing Profile
	5.2.5 MPI Profile

	Using Cray Apprentice2 [6]
	6.1 Launching the Program
	6.2 Opening Data Files
	6.3 Basic Navigation
	6.4 Viewing Reports
	6.4.1 Overview Report
	6.4.2 Environment Reports
	6.4.3 Traffic Report
	6.4.4 Text Report
	6.4.5 Mosaic Report
	6.4.6 Activity Report
	6.4.7 Delta View
	6.4.8 Function Report
	6.4.9 Call Graph
	6.4.10 I/O Reports
	6.4.10.1 I/O Overview Report
	6.4.10.2 I/O Traffic Report
	6.4.10.3 I/O Rates

	6.4.11 Hardware Reports
	6.4.11.1 Hardware Counters Overview Report
	6.4.11.2 Hardware Counters Plot

	Cray XT Series Hardware Counters [A]
	Build Directives [B]
	Glossary
	Index
	List of Tables
	Table 1. CrayPat Components
	Table 2. pat_build -g tracegroups
	Table 3. pat_build -T Arguments
	Table 4. Build Directives
	Table 5. pat_build Environment Variables
	Table 6. Standard Reports
	Table 7. -d Option Keywords
	Table 8. -d Option Values
	Table 9. -d Option Thresholds
	Table 10. -b Option Keywords
	Table 11. -s Option Keywords
	Table 12. pat_report Environment Variables
	Table 13. pat_run Options
	Table 14. pat_hwpc Options
	Table 15. Cray Apprentice2 Navigation Functions
	Table 16. Common Panel Actions
	Table 17. Hardware Counter Groups
	Table 18. Common Hardware Counters

	List of Procedures
	Procedure 1: Basic CrayPat Usage
	Procedure 2: Using pat_hwpc
	Procedure 3: Using CrayPat API Calls
	Procedure 4: Using CrayPat hwpc Calls

	List of Examples
	Example 1: API calls in a Fortran program
	Example 2: API calls in a C program
	Example 3: hwpc Calls in a Fortran program
	Example 4: hwpc calls in a C program

